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4 n this study, the acoustic near field of excited spherical shells is
investigated. The interaction of the acoustic medium with the vibration
response of an elastic spherical shell due to an excitation by a point force
or an acoustic point source is investigated analytically and experimentally.
Thus, only axisymmetric, nontorsional motion of the spherical sehll is
considered, with a thin shell theory that includes extensional and bending
deformation.

The elastic spherical sehll resonances were computed when in vacuo and when
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submerged in light (air) and heavy (water) acoustic medium. These
were verified experimentally by testing two duralumin shells,
a = -inches in radius and wall thicknesses h = 0.0514 and 0.1069 inch.
The measured resonance frequencies were within 5% of those predicted in
air and in water for identified mode numbers up to 34. The measured
mean-line driving point admittance also agreed well with the predicted
ones to within 3 dB. ehe

Also in this study,'tte exact wave harmonic series and the approximate
Geometrical Theory of Diffraction (GTD) were used to predict the acoustic
near field of an elastic spherical shell insonified by an acoustic point
source. The predicted normalized, acoustic nearfield pressure computed
by the exact solution agreed very well with the measured ones for
frequencies up to ka = 30 . The nearfield acoustic pressure was also
computed by the GTD method with a locally reacting impedance assumed
for the spherical surface. The decayed diffracted rays were then
computed and summed to give the total diffracted pressure spectra in
the shadow zone. Various surface impedances were assumed and the
resulting nearfield pressure was compared to the exact solution. The
GTD solutions were generally 60 dB or more lower than the exact ones,
even when one assumes the fairly hard characteristic impedance of
duralumin to represent the impedance of the shell. The source of the
discrepancy was traced to the structure-borne resonant vibration which
is not accounted for in the GTD. This means that the predicted acoustic
near field of general elastic structures as computed by the GTD method
will not agree with the exact solution.for such structures.
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ABSTRACT

In this study, the acoustic near field of excited spherical

shells is investigated. The interaction of the acoustic medium with

the vibration response of an elastic spherical shell due to an

excitation by a point force or an acoustic point source is investigated

analytically and experimentally. Thus, only axisymmetric, nontorsional

motion of the spherical shell is considered, with a thin shell theory

that includes extensional and bending deformation.

The elastic spherical shell resonances were computed when in

vacuo and when submerged in light (air) and heavy (water) acoustic

medium. These were verified experimentally by testing two duralumin

shells, a = 8 inches in radius and wall thicknesses h = 0.0514 and

0.1069 inch. The measured resonance frequencies were within 5% of

those predicted in air and in water for identified mode numbers up to

34. The measured mean-line driving point admittance also agreed well

with the predicted ones to within 3 dB.

Also in this study, the exact wave harmonic series and the

approximate Geometrical Theory of Diffraction (GTD) were used to

predict the acoustic near field of an elastic spherical shell

insonified by an acoustic point source. The predicted normalized,

acoustic nearfield pressure computed by the exact solution agreed

very well with the measured ones for frequencies up to ka = 30

4 -The nearfield acoustic pressure was also computed by the GTD method

with a locally reacting impedance assumed for the spherical surface.

The decayed diffracted rays were then computed and summed to give the

;,
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total diffracted pressure spectra in the shadow zone. Various surface

impedances were assumed and the resulting nearfield pressure was

compared to the exact solution. The GTD solutions were generally

60 dB or more lower than the exact ones, even when one assumes the

fairly hard characteristic impedance of duralumin to represent the

impedance of the shell. The source of the discrepancy was traced to

the structure-borne resonant vibration which is not accounted for in

the GTD. This means that the predicted acoustic near field of general

elastic structures as computed by the GTD method will not agree with

the exact solution for such structures.
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CHAPTER I

BACKGROUND

1.1 Introduction

The study of the vibration of a spherical shell submerged in an

infinite acoustic fluid medium is the main objective of this thesis.

The mechanical and acoustical energies are coupled by a fluid reaction

[1]. The vibration of a spherical shell has been studied by many

authors [2-8]. In a paper "On the Vibrations of a Spherical Shell,"

Lamb [2] has investigated a membrane spherical shell for axisymmetric

vibration, and pointed out the existence of two infinite sets of normal

modes. Baker [3] has expanded the work given by Lamb, and demonstrated

experimentally the existence of normal modes predicted by the theory.

Kalnins [4] studied the bending effects on the vibration of a spherical

shell in vacuum, and labeled the lower branch as bending modes.

Wilkinson [5] showed that there are three branches in the frequency

spectrum when the equations of motion of closed spherical shells

include the effects of transverse shear deformation and rotatory

inertia.

Considering the vibration of a spherical shell submerged in

fluid medium, Junger [1] examined the sound scattering of a membrane

elastic spherical shell, insonified by a plane acoustic wave. He

concluded that the scattering field of all elastic scatterers is the

result of the rigid body scattering and radiation scattering. In

another paper [6], he studied the same dynamic configuration but

excited by a point force. He demonstrated the radiation loading on

* A..
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an elastic shell. Hayek [71 studied the vibration of the forced,

axisymmetric spherical shell in the light of the bending theory in an

acoustic medium. He concluded that the resonance frequency is sensi-

tive to the parameter (h/a) , especially for large mode numbers n

and the resonance frequency increases as n increases, no matter how

small is the ratio (h/a) . Lauchle [8] extended the work of Junger,

and demonstrated the interaction of a spherical acoustic wave with an

elastic spherical shell in fluid media.

1.2 Statement of the Problem to be Studied and the Mathematical

Model

In the present paper, the effects of fluid loading on elastic

spherical shells are investigated experimentally and analytically.

Mathematically, the shell is modeled using thin shell theory [9, 10],

a theory considered valid for a large number of practical applications.

Within the range of the thin shell theory, (h/a) < 1/20 [91, two

different thickness (h = 0.0514" and h = 0.1069") duralumin elastic

spherical shells of radii a = 8" have been used for the experiments.

In the thin shell theory, there are three approximations of different

orders: (1) membrane theory [21--this theory neglects all moments

since the wall thickness of the shell is very small; (2) classical

theory [7]--this theory includes the bending factor (h/a) 2/12; and

(3) improved theory [51--this theory includes the effects of transverse

shear deformation and rotatory inertia. Investigation of the resonance

frequencies of the shells showed that the classical thin shell theory

is adequate. Due to the type of excitation of the shells, the basic
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equations are limited to the axisymmetric nontorsional vibration of a

spherical shell.

First, the equations of motion for the shells in this study are

derived by applying Hamilton's variational principle. To investigate

the effect of bending, the resonance frequencies are computed. The

equation derived for the natural frequencies of a submerged shell is

transcendental. The standard linear method was not useful for solving

such an equation. Therefore, a new method was developed for the

computation of the resonance frequencies. The new derivation also

gives a deeper insight into physical interpretations of the results.

This method, derived for the equations of motion of submerged cylind-

rical shells in terms of generalized coordinates, has been developed

by Hayek [111 to compute the resonance frequencies of submerged

shells. By applying this method to spherical shells, the resonance

frequencies of a submerged spherical shell were obtained.

The second problem considered is the acoustic radiation from

a point-force excited spherical shell. For a force-excited shell,

consider a unit concentrated, harmonic force exciting the shell at

0 = 0 . The shell is freely suspended in a fluid medium. The

driving point admittance was computed for such a loading and measured

experimentally. Furthermore, the expressions for the resonance

density of the shell was derived for high and low frequencies. These

were used in the characteristic admittance theory of Skudrzyk [121 to

predict the meanline of the driving point admittance of a point-force

excited spherical shell in vacuo.

- - -. - - --
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The next problem considered is the acoustic point-source excited

shell. The mathematical model for the shell motion is the same as that

given above, but the shell is insonified by an acoustic spherical wave.

The effect of the fluid loading on the shell is investigated for the

near field analytically and experimentally. Furthermore, the radiated

pressure due to the vibration of the shell responding to the pressure

of the incident spherical wave will be examined analytically by use of

wave harmonic functions. The internal damping is also considered in

this problem.

Finally, the diffracted pressure field due to a point source in

the vicinity of a spherical shell was re-evaluated by use of the

Geometrical Theory of Diffraction (GTD) due to Keller [13-15]. This

approach was taken because the wave harmonic function expansion would

not be possible for shells that are not regularly shaped. The approach

requires the knowledge of the impedance of the surface around which

acoustic rays propagate. Comparison of the exact wave harmonic

solution with the GTD method was made.

The model of the problems being studied consists of a spherical

elastic thin shell excited by an acoustic spherical wave or a unit

concentrated harmonic force. The shell is submerged in an infinite

compressible acoustic medium having a mass density p , and the sound

speed c . As shown in Figure 1.1, the shell has a radius a , and

the thickness of its wall is h . The mass density of the shell is

S while Young's modulus and Poisson's ratio are E and V ,j)

respectively. The shell is located at the origin of the spherical

coordinate system. The source is located on the z-axis at the point



f5

I1 z
S(r t,OO)

I r dRR(r, 0,)rI

x

Figure 1.1 Configuration of the spherical shell
in the spherical coordinate system
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S(r ,O,O) , a distance r from the center of the shell. The observer
0 0

point is R(r,e, ) , where r is the observer distance from the center

of the shell, and 0 is the aspect angle. This arrangement will reduce

the problem to the study of an axisymmetric vibration of a spherical

shell as well as the pressure field.

I4



CHAPTER II

FORMULATION OF THE THIN SPHERICAL
SHELL'S EQUATION OF MOTION

2.1 Introduction

In this chapter, the equations of motion of a submerged

spherical shell are derived by applying Hamilton's variational

principle [16, 17]. For a better understanding of the dynamic inter-

action between a submerged spherical shell and the surrounding

acoustic medium, the equations of motion are also derived in terms of

generalized coordinates [i). Generally, the analytic formulation is

performed for idealized conditions. For thin elastic spherical shells

submerged in a fluid medium, it is assumed that [9, 10]:

1. The material of the shell is linearly elastic,

isotropic, and homogeneous--this means that the

material of the shell obeys Hooke's law.

2. The ratio of the thickness to the radius is

(h/a) < 1/20 , so that the thin shell approximate

theory can be used.

3. The displacement of the shell is small when compared

to the thickness h

4. The shell is freely suspended; straight fibers of

the shell which are normal to its middle surface

before deformation remain straight and normal to

the deformed middle surface and do not suffer any

extensions as suggested by Kirchhoff; and the normal

BX
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stresses acting on planes parallel to the shell

middle surface are neglected as compared to the

other stresses as introduced by Kirchhoff.

5. The acoustic pressure (disturbed pressure) has a

linear relation with the condensation of the fluid.

6. The fluid is compressible and inviscid.

2.2 The Equations of Motion

In the present section, the dynamical response of an elastic

body is considered where the applied forces, the displacements, etc.,

are time-dependent. To derive the equations of motion, Hamilton's

variational principle is applied. The variational integral requires

expressions for the kinetic energy T and the strain energy V of

the system as well as the external forces as derived from a potential

function Q . Hamilton's principle states that:

ft2 (T - V + Q)dt = 0 (2.1)

tI

where t1 and t2 are the initial and final time states, respective-

ly, of the system. The symbol 6 represents differential variation.

There are many different approaches to obtain an expression for

the strain energy of a thin shell. In this study, the expression for

the strain energy density of thin shells as developed in References (9]

and [10] will be used. Generally, the expression for the strain energy

for shells is defined by:



i9

I- i
(Vy + aP + C+ P + a + nP n)dv

V

(2.2)

where aY, G, an  are the normal stresses on three mutually perpen-

dicular faces of an element of the shell, p,, P, pn  are the

corresponding strains, a O, '0n' On are the shear stresses on these

faces, POO) , Pe n are the corresponding shear strains, and dv is

the volume of the element. The stresses on the middle surface are

shown in Figure 2.1.

By applying the assumptions of Kirchhoff in Section 2.1, the

stress Cn and the strains p0n, P0n can be neglected as compared

with the other stresses and strains, respectively. Therefore, Equation

(2.2) may reduce to:

= f (fO0 + aP + C0,P0,)dv (2.3)

v

Expressing all stresses in terms of strains, expanding the

strain in a Taylor's series of (h/R) , and neglecting terms of the
3

order (h/R ) and higher, where R is the principal radius ofS S

curvature of the shell, one obtains an approximate expansion for the

strain energy density:

2

+ Eh [ (  + 0 )2 -2(1 - )(p 0 P- 0 2-)JA A d d
2(1 - V-)

.K + K 2(- -v)K0K- 4)AAd

(2.4)

where E is the Young's modulus, V' is the Poisson ratio, A0  and

A are the Lame parameters, Ke  and K are the changes in curvature

,9 4 ; , , ,'. .: .,,:
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on

Figure 2.1 Direction of the stresses a acting

on the middle surface of the shells.

n , 0 , p are the orthogonal

unit vectors.

WWI

'~* ... •" " £- k --- . .........-..



11

due to bending of the deformed middle surface of a shell about the 6

and coordinates, respectively, and K,, is the parameter for

torsional deformation. The integral in Equation (2.4) is the surface

integral over the middle surface. It should be noted that the

extensional and shear energy is represented by the first integral,

and the second integral represents the bending and torsional energy.

For axisymmetric extensional and bending motion of the shell,

Equation (2.4) can be further simplified because the shear and

torsional factors vanish for axisymmetric motion. The variables in

Equation (2.4) are, therefore, expressed as:

1 Du wP e =  0 -e  R e '

P = A A 3a RA

P0 = o R

0 e +--e + e

K1 "0 3 L
= A A 3 (A -5 + )

00

and

K = 0 , (2.5)

where u u(O,t) and w = w(O,t) are the tangential and radial

displacements, respectively, and R and R are the radii of the

curvature of the shell about 0 and coordinates, respectively.

Consider the geometry of a spherical shell, then, A0 = a,

A = a sinO , and R = R = a . The geometric configuration is shown

in Figure 2.2. Substituting the above relations into Equation (2.5),

*j . W



-~ - 12

Iz

x P

y

Figure 2.2 Orientation of the vectors of
a spherical shell

-777Y.



13

one obtains expressions for a spherical shell:

Pe = 1 [au

= I [u cote - w]
a

P8ep = o0

K = '
Ke - : uw+-]a e2 -

-- 1 [u + DIcote
a

and

K =0 (2.6)

The total kinetic energy of the shell is:

1 I

T= PJ (i2 + 2 )dv
2 v

= Tr Ps ha2  (602 + ,2) sinOdO (2.7)

0

where 6i and * are the time derivatives of u and w , respectively.

The external forces of the considered problem are the normal compGnent

of applied surface forces, pi (acoustical or mechanical forces), and

the reactive normal surface force, pr' due to the fluid loading.

Therefore, the potential function due to these two force systems are:

Q= - f (Pr + pi)wds

-'2 a2 f(P + pi)w sin-dO (2.8)
0 r

Substituting the strain and kinetic energies and the potential function

into Equation (2.1), one obtains the coupled equations of motion of a

spherical shell in terms of displacements u and w

*f
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2 u 22]+ + [(V + cot u - cote - _, + .8cot e+ 1 + v + v8)

36+ +) 2 o 2 2 +_+ 3
Soot 2 2 u = 0 (2.9)

ae2 ae3 E sa t2

and

3u + 28cotO 3 2 u - [(1 + V) (I + a) + scot2e]33 H 2 D

+ [ Cot 38 + 38cotO - (1 + $3)(1 + v)cote]u

S +3 2

+ 1-24w + 2cot 3 - (1 + V + cot 0) 2L384 903 a2

+(2cot0 + cot3e - vcote) -j+2(+ w

where ~ ~ ~ ~ 2(1+ ::)w eutost

+1 - 'V2  2 3 2 w + 1l - V 2 2 (pr+(.0

E sa t2 Eh a + pi) = 0 , (2.10)

where = (h/a) 2/12 is the bending factor.

By changing the variable 6 in the foregoing equations to a

new variable n = cosO , and using a time harmonic variation for all

variables:

-j~jt -iWt
u = U(n)e w W(q)e

and
-ilot = (2.ii

Pi = P ()e ' Pr = P (n)e t (2.11)

Equations (2.9) and (2.10) can be rewritten in the following form:

2 2
Lu U + LuW = (l- V)QU (2.12)

* . .
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and

L U + L W = ( - 2)Q2 W a 2 + P (2.13)
wu ww Eh i r

where the operators Luu, Luw' Lwu Lww are given by:

L = -( + n)[(1 - n2) I/2  (1 - +2)1/2

(2.14)

L = n212l -) - (l2 + )-+ V2 I

(2.15)

d 21/2 2d ( 1/2
L = -{[B(I - v) - (I + v)] (1 - n2 ) + V (1-n2)}
wu nd

(2.16)
and

L = V4 + ( -V)V 2 + 2(1 + V) (2.17)
ww

where

V2 d (i - n 2 ) dT= d-1

2
02 = s w2 a2 /E = is the normalized frequency,

S Wr 2

cb
S= - is the ring frequency
r a

and

C = /E (2.18)

b PS

In Appendix A, a detailed derivation of the equations in this section

is given.

For this problem, the tangential and radial displacements can

be expressed in terms of Legendre polynomial of degree n as follows:

~dP (n)
0 (l 2 1/2 dPn (T , 00= ~ W*~l

U(n) = U(l n ) W(n) W P (n)
n=o n=o

(2.19)

-7 ,---
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and
P Y Pinpn (Y)' Pr = p Prn en( ) (2.20)

n=o n=o

Then, on substitution of these two equations into Equations (2.12) and

(2.13), one obtains two algebraic equations in terms of U and W nn n

{(I - 2 )Q2 - (1 + )[xn - (1 - )}U n

+ {O[An - (I - v)M + (I + v)}Wn = 0 (2.21)

and
[X ( -V) - (i + V) - X 2]U n + [BX 2 _ n

+ 2(l ~ ~ ~ ~ + v) (1-V ) 1 - 3a2( +)X

n n Ehn n

22I - 22( n

+ 2(1 + v) - (1 - V2) 2]W n  Eh in +rn )

(2.22)

vhere X = n(n + 1)n

2.3 The Natural Frequency, the Mechanical Impedance, and the Ratio

U /W of the Shell in Vacuo

Before proceeding to present the solution to shell vibration

excited by an acoustic point source, one should examine the free

vibration of a spherical shell. For a freely vibrating shell, there

exists no applied force, and the shell in vacuo is not subject to any

reactive forces due to the fluid loading effect. It is evident that

the foregoing Equations (2.21) and (2.22) become two homogeneous

equations with two unknowns U and W . The determinant of the
n n

equations must vanish, which results in the frequency equation as

follows:
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(1 - V2)2 4  n 2 + (1 + ) n + (1 + 3v) - a(1 - v)](1 - 2) 2

+ Xn 3 4n 2 + [1(5 - v2) + (I - V 2 )] n - 2(1 + a)(1 - v2) = 0.

(2.23)

This is a quadratic equation in Q2 with only two distinct positive

roots for each mode number n . The larger root of each mode belongs

to the upper branch, and denoted by Ob . The smaller root, Q.,

belongs to the lower branch. The roots "n and Zn are the

natural frequencies of the spherical shell. For n = 0 , there is

only one positive real root:

12 2
ho 1 - v

This frequency represents purely radial motion, which is referred to

as the "breathing mode." This mode's elastic energy is due to the

extensional deformation only because the shell vibrates only in the

radial direction, and the radius of curvature of the shell is con-

stant. The natural frequencies of duralumin shells of radius a = 8

inches and thickness h = 0.1069 inch and h = 0.0514 inch were

computed and tabulated in Tables 2.1, 2.2, and 2.3, respectively, and

also plotted in Figure 2.3. It is clear that the natural frequencies

of the lower branch for membrane theory, 3 = 0, are independent of the

shell's thickness, while the natural frequencies of bending modes,

for a > 0, vary with the thickness. However, the upper branch

frequencies do not change significantly with 1 • For a thin shell,

where the ratio h/a is very small such as the ratio 0.0064 shown in

Figure 2.3, the membrane theory may be applicable at low frequencies

.... ...
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Figure 2. 3 [)imension lcss frequency 02 for various
modes when spherical shells are excited
In vacuo
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IJ
or for small values of the mode number. It is interesting to note

that Q approaches unity when the mode number goes to infinity for

S= 0 . Different asymptotic approximations to the roots of

Equation (2.23) can be obtained as follows:

2 X n- 2
r2 9 0n < 1 (2.25a)

9n X + 1 + 3v ' < 1
n

2 X 2

2+ , +1 > 1 (2.25b)

and

2 + 1 + 3v

hn % n 2n > 0 (2.25c)
1 -

For a thick shell (h = 0.1069") or thin shell (h = 0.0514"),

Equation (2.25b) and (2.25c) predicts the natural frequencies with

10% accuracy for n > 6 for the lower branch and n > 3 for the

upper branch. These approximations are better than those given by

Feit and Junger [18] which eliminates the unity in Equation (2.25b).

The unity in the formula for the lower branch represents the membrane

energy and the first term represents the bending energy. Thus,

neglecting this factor, the 10% accuracy can only be obtained for

n > 20 for the lower branch. If n is large enough, the unity can

be neglected and the shell resonances approach those of a plate of

equivalent surface, i.e., the shell resonances fall in the so-called

"plate range," where the curvature effects are no longer important.

When Q < 1 , the lower branch roots given by Equation (2 .2 5a) are

within 5% for n < 10 . These frequencies are shown in Figure 2.3.

The modal mechanical impedance of a spherical shell is inde-

pendent of the type of excitation. It just indicates how the shell

. .. .. .. . . .... .. . .. .
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itself responds to a modal force. In order to determine the modal

mechanical impedance of a shell, the problem of the forced vibration

of a shell in vacuo shall be considered. Since the structure is in

vacuo, there is no fluid pressure acting on the shell. The modal

fluid pressure Prn in Equation (2.22) should be set to zero. Then,

solving the equations of motion in Equations (2.21) and (2.22), one

obtains the modal mechanical impedance of the spherical shell:

P in P in iEh N

Zmn -iWW 2 D (2.26)
n (1 -V )wa n

n

j where
N = (I - V2) 2 4 

- [3 2 + (l+ 3v)A + 1 + 3V- (- )1- 2)Q2

n n n

+ X3 - 4 2 + [a(5 - V2 ) + (i - V2)M n - 2(1 + 8)(1- 2

n n

and

D = - (I + )n + (1 - v)(i + 8) + (1 - V 2)Q 2

n n

When 3 = 0 , Z reduces to the modal mechanical impedance
mn

of a membrane shell [8]. The modal ratio of the tangential to radial

displacement amplitude U /W is obtained from Equation (2.21) asa n

follows:

U 5[Xn - (1 - V)] + (1 + V)
-a = _. (2.27)
n (1 + )[Xn - 1 )] - (1 - V2)2

The modal ratio depends on the excitation frequency 2 . The modal

ratio for two duralumin spherical shells at the natural frequencies

is shown in Tables 2.1, 2.2, and 2.3. It decreases with increasing n

(and natural frequency) for the lower branch, while it is fairly

constant for the upper branch.

L %
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2.4 The Derivation of the Equations of Motion of a Spherical

Shell in Terms of Generalized Coordinates

Although the equations of motion of a spherical shell have been

derived, the derivation of the dynamic equation in terms of general-

ized coordinates is also necessary. Equations (2.21) and (2.22) in

terms of the tangential and the radial displacements cannot, in some

ways, provide a clear-cut mathematical model from which one can

immediately identify physical properties. However, when the dynamic

equations are expressed in the form of a differential equation in

terms of generalized coordinates, the model is mathematically

identical to that of a single oscillator system.

A derivation of the shell's dynamic equations is accomplished

by applying Hamilton's principle as presented in Section 2.2. The

displacements u and w are expressed in terms of generalized

coordinates as follows:

u = Un (O)q n(t) (2.28)

and

w = Wn(O)qn(t) , (2.29)

where U and tW are the mode shapes of the tangential and then n

radial component of the displacement as defined in Section 2.2, and

qn(t) are the generalized coordinates.

Following the preceding derivation, the variation of the

kinetic energy and the potential function of external forces are:

6T (((2 + (t 2 )q 6q (2.30)
n n n n
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and

Q= - (P U + P W ) Sq , (2.31)un wn n

where P = Psh  is the surface density of the shell, P and P

are the external forces on the surface of the shell in tangential and

radial directions, respectively, and 4n represents the acceleration.

For the free vibration of the shell, 6Q = 0, and

qn(t) = exp(-iwt), where W is the natural frequency root of

Equation (2.23), then, from Hamilton's variational principle, one

obtains the strain energy:

fCVds = f 6Tds

= - -2 qn6q ( + -2 , (2.32)

s

th
where W is the natural frequency of the n mode.n

For the forced vibration, one has the equation of motion

expressed in terms of generalized coordinates:

2 F (t)
qn+w q n - M(2.33)

+ nin M
n

where the generalized force is:

F (t) = f (P + P W )ds (2.34)

and the generalized mass (modal mass) is:

M f J (- 2 + WF2 )ds (2.35)
s CI
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For a spherical shell:

M _ fr f (Un + Wn)a sin6 d6d

0 0

2- + (- f2) ( n+)

2 -ra - + p2( d, (2.36)I -l n
where

U dP
n _W dP

Un(TI) V - dr2
n

and

Wn(]) = P () (2.37)

Using the following integrals:

+  2 dPn )  2 2n(n + 1)
+ i - dP1 ) dn - 2n + I

-I

and J+1 2 2
P2 n(n)dn  = 2n

one has:

M ra2 2 +1 n + M S (2.38)n = 2n + 1I n 'n

where S = n (U /W )2 + 1 is the mode shape factor of the shell, Mn n n n

is the total mass of the shell.

Three kinds of forces will be considered, namely, the excitation

force, the reactive acoustic pressure, and the internal structural

damping force of the system. The generalized applied force, acting

normally on the surface, is given by:

PIIA
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Fln = J Pwl Wn ds
5

= 27Ta2  Wn pin dri (2.39)

-1

and the acoustic pressure on the surface of an axisymmetric shell is:

= -Z W = - Z W , (2.40)
rn an n an n n

where the acoustic impedance is:

Z ipc h(1)(ka) = r - iWM , (2.41)
h ' (ka) an an

n

where r and M represent the modal acoustic resistance andan an

reactance (virtual mass), respectively. Substituting Equation (2.40)

into Equation (2.34), one has the generalized acoustic pressure:

F2  = Z an 4 f Wds (2.42)

By applying Equation (2.37), F2n becomes:

47ra2

Fn = - 2+1a [r + +M 1 (2.43)
2n 2n + 1 an n an n

In order to derive the structural damping force, consider the

damping force to be proportional to the velocity, and the generalized

force thus becomes:

IT +2 2
F3 n n j+n -2 +1 W 2,:d (2.44)

o - n ()
where K is a proportional constant. By-using the result of

Equation (2.38), one obtains:
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F 3n -M n Kn (2.45)

Replacing the generalized forces in Equation (2.33), the modal

dynamic equation of the shell becomes:

(M an+ S n)n + (r an+ r sn)4 n+ = f n (2.46)

+1
where rsn =KSn ,and n 2 -1 Wn pin dn

It is evident that the differential Equation (2.46) is similar

to that of a damped single oscillator [12]. The coefficient of qn

represents the total mass, Mt, of the system which is the sum of the

modal mass, Mn, of the shell and the accelerated fluid virtual mass

[12] due to the fluid loading. The coefficient of 4n , consisting of

the radiation resistance, ran, and the structural resistance, rsn,

corresponds to the resistance factor, Rf. The coefficient of qn

corresponds to the stiffness of the shell's elasticity.

Rewriting Equation (2.46), one obtains:

K r +1
n •+ -- 2 W WP dri

- IS W n in

~an nana 2 '-
1+ *ji +; +~ 2 I~ .!n + Ij lISn USn Jn "

(2.47)

For a freely vibrating shell in an acoustic medium, let

q= Anexp(-i0nt) , where the natural frequency of the submerged

shell w , Equation (2.47) gives an expression for w as:

2 2

-2 Wn - n
n M 1+M (2.48)

1 +an R
I+-

n

. "AI
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where w is the natural frequency in vacuo, and the factor,n

M = Man/PSn, represents the ratio of the additional fluid virtual

mass to the unloaded shell modal mass.

It is evident from Equation (2.48) that the resonant frequency

of a submerged shell is affected by the virtual mass, M and the~an'

modal mass, M = --PS . In other words, it is determined by the mass
n n

loading factor, MR. The virtual mass, which is a function of the

frequency, adds to the inertia of the shell. The contribution of this

mass to the total mass of the system depends on the acoustic character-

istic impedance Pc . The modal normalized acoustic resistance,

ra/PC, and reactance, M /Pa, are computed from Equation (2.40) and
an an

plotted in Figures 2.4 and 2.5, vs the nondimensional frequency ka

respectively. The modal reactance increases with frequency and then

decreases rapidly toward zero as the frequency increases. It means

that the virtual mass is low at high frequencies. The normalized modal

acoustic resistance increases from zero to peak value before it reaches

its asymptotic value of unity for high frequencies.

The natural frequencies of a submerged shell w are obtainedn

from Equation (2.48) by use of an iteration technique, since the natural

frequencies in vacuo, w n' are already known. These are tabulated in

Tables 2.4 and 2.5 for the two shells and plotted in Figures 2.6 and

2.7. It is evident that the submerged shell natural frequencies of the

lower branch are lower than those for a shell in vacuo. However, the

submerged shell natural frequencies of the lower branch approach those

for a shell in vacuo at high frequencies. This is evident when one

examines Equation (2.48) since Mn vanishes for high frequencies.
an

However, for a shell vibrating in air, thle natural frequencies are the

la .1
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same as those for a shell in vacuo for both branches (see Figures 2.3

and 2.6) because of the light acoustic loading.

For a shell submerged in water (heavy fluid loading), the factor

MR for the lower branch is significant when compared to unity as shown

in Tables 2.6 and 2.7. The resonant frequency for a submerged shell is

thus lower than the natural frequency in vacuo as shown in Figures 2.7

and 2.8. The mass loading factor, MR9 increases up to four times the

mass of the shell for the mode shapes of the primarily radial modes of

the lower branch (U n/W n ) << 1 (strong fluid coupling) except that

(Un/Wn) = 1 (Ql = 0) for the first mode. Thus, the natural fre-

quencies in water are reduced significantly for the lower branch at

low mode numbers. However, when MR decreases to less than unity for

high mode orders of the lower branch (higher frequencies), the natural

frequencies in water are slightly decreased from those in air. For

the mode shapes of the upper branch, which are primarily tangential

(U n/W n ) < 1 (weak fluid coupling), the virtual mass of the accelerated

fluid is negligible when one examines MR  for the higher branch in

Tables 2.4, 2.5, 2.6, and 2.7. Tn other words, the heavy fluid

loading significantly influences the branch having a strong coupling

(lower branch) and slightly alters the frequencies of the first few

modes of the upper branch only (weak coupling).

The modal acoustical and structural loss factors, L and Lan sn

respectively, can be defined from the modal single oscillator modal in

Equation (2.46) as follows:

r
L = an (2.49)
an w ( t + S29

n an n
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and
r

L sn (2.50)

n n

The loss factor, L , is tabulated in Tables 2.4 and 2.5 for air and

in Tables 2.6 and 2.7 for water. The total impedance is defined as:

Z = Z + Z , (2.51)
n an mn

where the acoustic impedance, Zan' is given in Equation (2.41) and the

mechanical impedance, Z mn is given in Equation (2.26). At resonance,

the reactive part of Zn must vanish, i.e., Im(Zn ) = 0 . Thus, the

modal impedance of the submerged shell is purely resistive at resonance.

The total resistance of the submerged shell is the zum of the structural

and acoustic loss factors.

2.5 The Resonance Density of Spherical Shell

In order to obtain an approximation of the shell's character-

istic admittance, a study of the spherical shell's resonance density

is necessary. The resonance density [12] is defined as:

1 dn

E dw
n

a dn (2.52)
C b dP 6

1/2
where w is the resonant angular frequency and Cb = (E/s) . Bv

differentiating Equation (2.23) with respect to mode number n , the

resonance density is expressed as:

'2
n4(1- ,) - 2(

n n

- -- .- - --
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where

a = (2n +1) (1l+ v(+ 2SX
n n

(2n + l)[(3AX - 8I3x + (3(5 -v 2 + (1 2
b n

b n 2

c 1 l+ 3V V3lx) +X (+ v) +(3OA
n n n

At low frequency or in the membrane range Q2 < 1 ,the parameters in

Equation (2.53) can be approximated as follows:

a \ (2n+l1)

bn (2n+ 1)

and

c (I (+3v + ) . (2.54)

Then, Equation (2.54) with n and n substituted for Equation (2.25a)

can be expressed approximately as:

dn 2 __ r_ ____

(1 -£2 )/1P£ < 1 ,(2.55)

which is independent of the shell thickness, because this is in thle

membrane range. In the membrane range, the resonance density increases

as £2 increases [see Equation (2.55)]. The resonance density reaches

a maximum [see Equations (2.53) and (2.54)] when Q2 is given by:

£2 _ n (2.56)

Thus, the maximuim resonance densitv gciven by:

dn 0.3/1 1.1
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It is quite clear that, in general, the maximum point is not at 2 i

except for a membrane maximum, when 8 = 0 . Due to introduction of

2
the term a n the maximum occurs at Q > 1 . Actually, the resonance

density is an inverse slope of the frequency curves shown in Figures

2.6 and 2.7. Thick shells' natural frequencies leave the membrane mode

at higher frequency when compared to thin shells. The take-off point

from the membrane curve in Figure 2.8 is the maximum point of the

resonance density. Therefore, it is expected that the maximum point

of the resonance density is closer to unity as the thickness of the

shell decreases and that the peak becomes hig'ier (see Figures 2.9 and

2.10). For frequencies above Q = 1 , the resonance density decreases

slowly with frequency.

At high frequency, Q >> 1, as the resonances approach the plate

range, it is convenient to use the asymptotic form. By differentiating

Equation (2.25a), the resonance density for the spherical shell becomes:

dn 1 2l/ 4  1
d- -L 2i/2[l - 23/ for 0 > I (2.57a)

and, in the plate range, becomes:

-- R (- v 2 /4  1 for >> 1 , (2.57b)

with a maximum value given by:

z ' 0.433/01 /2  (2.57c)

Figures 2.9 and 2.10 show the resonance density of the two

spherical shells in vacuo. Curves (1), (2), (3), and (4) represent,

me m B B B IB B ~ H B N ~ l| l BIi -: : " . ... .



50

100 (2)

I (3)

- 10
(4)

0

(1)

0.1 1 10

FREQUENCY PARAMETER (P.)

Figure 2.9 Resonance density of a spherical shell,
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h 0.0514", in vacuo



52

respectively, the resonance density for the exact [Equation (2.53)],

the low frequency approximation [Equation (2.55)], the density for

midrange frequencies' approximation [Equation (2.57a)], and the high

frequency plate range [Equation (2.57b)]. The maximum point in the

resonance density spectrum separates the resonances into membrane range

and plate range. Resonances between those two ranges are in the

so-called "coupling range." The segment of Curve (1) for Q > 1.5

matches with that of Curve (4) for the plate range, and Curve (3)

matches Curve (1) down to Q ' 1 . Curve (2) matches with Curve (1)

I up to Q = 1.0 . In the membrane range, both shells have the same

resonance density [see Equation (2.55)]. The higher resonance density

of the thin 3hell implies that it has a higher response when one

considers the driving point admittance (DPA) because the mean value of

the DPA [12] is:

=2E MT '(2.58)

nn

where M is the modal mass of the spherical shell [Equation (2.38)].n

Figure 2.11 shows the mean value of the DPA of the shells. For Q2> 1

Vi 2,)1/4

Yc 4ra l[2_-_v2)l/ 4  (2.59)

and

Y % (8a PSh) for S >> 1 (2.60)
c

When S1 < 1 , En in Equation (2.58) is replaced by AW because the

shell does not have many modes in the membrane range, and also, a 3 dB

is added to Equation (2.59) due to the imaginary part of the mean value

of the DPA (see Reference 12). Thus,

A-i M ~ anmi i 
' ' ' i d

..
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Figure 2.11 Mean value of the driving point
admittance of a spherical shell,
h =0.1069" , in vacuo
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I 2(n + 1) 2 < 1 , (2.61)
22c XphV (I 2)8ct h3(1 - V)A 2

where Ai (Wn 1 -W) / W

4 Eh2

and o4  h 2
12Ps (1- v )

4(
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CHAPTER III

POINT FORCE AND SOURCE EXCITATION OF A SPHERICAL SHELL

3.1 Introduction

In this chapter, the problem of the forced vibration of the shell

in an acoustic medium is presented. The two significant factors which

affect the response of the excited shell are the mechanical and the

acoustical impedances. The mechanical impedance is due to the response

of the shell in vacuo, and the acoustical impedance is due to the fluid

loading.

3.2 The Point Excited Vibration of a Shell

The response of a point excited shell in an acoustic medium is

analyzed in this section. The fluid pressure prn in Equation (2.22)

is no longer assumed to be zero. Since the radiated acoustic pressure

Prn is an outgoing wave, it can be expressed in terms of the spherical

Hankel function of first kind and order n . Therefore,

Prn = Cnhn(kr) (3.1)

or

Pr= Cnhn(kr)Pn(T)
n=o

where C is a modal acoustic amplitude, and k is the wave numbern

W/c

The inertial force of the shell balances the acoustic force due

to the fluid reaction at the boundary of the shell r = a . Then, by

applying Euler's equation, one obtains the coefficient:

j .- . .-. .
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Cn  = ipcW /h'(ka) • (3.2)
n~ n

Substituting C into Equation (3.1), one has:

In
Prr) I ipcthn(kr)/h'(ka)]*nPn(T))

San [hn (kr)/hn(ka)]WnPn() (3.3)

where Za= ipc[hn(ka)/h'(ka)]-n is defined as the acoustic radiation

impedance.

The radial displacement of the submerged shell is obtained by

solving the two simultaneous Equations (2.21) and (2.22) at the boundary.

The radial displacement is:

W - (Pin + Prn)/iwZmn at r = a , (3.4)n n

and the radial velocity is given by:

Wn = (Pin + Prn)/Zm (3.5)

The fluid pressure on the surface of the shell is deduced from Equation

(3.3) to be:

prn (a) = -ZW (3.6)

where the negative sign denotes the outward pressure.

The radial velocity and the radial displacement as expressed in

terms of the applied force and the total impedance of the shell by

combining Equations (3.5) and (3.6) are, respectively:

n Pin/Zn (3.7)
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where Z is the modal impedance of a submerged shell, andn

Wn = ip in/WZn (3.8)

The impedance of the system is no longer solely the mechanical impedance,

but the sum of the mechanical and the acoustic impedances. This

impedance will cause a change in the displacement and the resonance

frequency from those in vacuo.

The driving point admittance and the response pressure field are

examined first. Consider a unit concentrated force which can be

described by:

pi = (l/47Ta 2) 1 (2n + 1)P (n)n
n=o

I PinP(n) (3.9)
n=o

From Equation (3.7), the modal velocity of the shell in an acoustic

medium is given by:

= 2n + 1 (3.10)
n 4a2Z

n

The radial velocity of the submerged shell is given:

= (2n + I)P (n)/(47a2 Z) (3.11)
n=o

When Z = 0 in the above equations, the structure is vibrating in

an

vacuo.

The driving point admittance (DPA) is defined as the ratio of

the radial velocity of the shell to the applied force at that particular

point. The'DPA is obtained directly by setting n = [P n(1) = 11 in

.. .. . .. ..... .- - ' .... . .. . .. -! ,, . . , -
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Equations (3.9) and (3.11) and taking the ratio,

Go 2n+l1
I Z

Yd n=o (3.12)

4isa

d4a 

Finally, substituting Equation (3.10) for thinto Equation (3.3), the
n

pressure field of a submerged shell is:

Z h (kr)

P rn 2 )an n pn(N (3.13)Pd~rn = 2 n +)Z h'(ka)n
4ra 2  n n

At resonance, the imaginary part of the total impedance Z nis

annn

r snof the shell and the acoustic resistance r an, where

an nan

shell is expressed conveniently as:

z (w) = z + z
n an mn

= [rmn + r an(W)] + i[M mn(W) - WM an(w) ]

where Z = r + iM and Z = r - iWM , for mode numbermn mn mn an an an

n = 0, 1, 2, ... j-l, j, j+l, ....

3.2.1 Numerical Analysis. Calculations are made for two

different duralumin spherical shells when submerged in air and water.

The physical properties of the shell material, fluid, and the dimensions

of the shellsare listed in Table 3.1. The computation was performed on

an IBM 36/72 digital computer.

Before proceeding to examine the behavior of the DPA of the

shells, an understanding of the physical role the mechanical and the

acoustic impedance play in the DPA, and the relationship between them,

LL- L ti J A-1
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TABLE 3.1

PHYSICAL PROPERTIES OF A DURALUMIN

SPHERICAL SHELL AND ACOUSTIC MEDIA

Thickness (h) 0.0514", 0.1069"

Radius (a) 8"

Young's Modulus (E) 1.037 x 10 psi

Poisson's Ratio (v) 0.335

Mass Density of the Shell 
(p ) 2.649 x 10

-4 lb. sec. 2/in.
4

Mass Density of Air (P) 
1.15 x 10

- 7 lb. sec. 2/in.
4

Mass Density of Water (P) 
9.645 x 10

- 5 lb. ec./in.
4

Velocity of Sound in Air (c) 1.356 x 104 in./sec.

4
Velocity of Sound in Water (c) 6 x 10 in./sec.

(ka) air 0.3033 x Q

(ka)tr 6.85 x 10- 2 x

(PC) w5.79 
lb. sec./in.

3

(water 3

(pc) air 
1.68 x 10

- 3 lb. sec./in.
3

" who
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is necessary. The resonant modal mechanical impedance Z , the

acoustic impedance Z the total impedance Z , and the velocityan ' n n

for an undamped shell, i.e., n = 0 , are listed in Tables 3.2 and 3.3,

and Tables 3.4 and 3.5 when submerged in air and water, respectively.

For a damped shell, i.e., = 6 x 10 [19], these values are listed

in Tables 3.6 and 3.7, and Tables 3.8 and 3.9 when submerged in air and

water, respectively. As mentioned in the previous section, the total

reactance, i.e., the imaginary part of Z , is zero at resonance. But
n

-3
this is not true for calculation of the resonances to within 10 ; hence,

I (Z) is not exactly zero.
m n

Since the magnitudes of the mechanical and acoustical reactances

are close, the error in their sum, when compared to the sum of the modal

mechanical resistance rmn , and the modal acoustic reactance r an, can

be significant. Thus, when evaluating the response at resonance, the

sum of M and M is set to zero to ensure that the response atmn an

resonance is dependent purely on the sum of r and rmn an

In air, the resonances of both the lower and upper branches shown

in Tables 3.2 and 3.3 are close to those in vacuo because the magnitude

of the reactance M (wn ) of the acoustic impedance Z (w ) is of the
ann an n

order of 10 in the lower branch and of the order of 10 in the upper

branch. This means that the mass ratio factor MR  is negligibly small

as compared with unity, and the resonances are nearly the same as those

in vacuo. This was already shown in Figures 2.6 and 2.8. The DPA

th th
response of an undamped shell is dominated by the n mode near the n

resonance frequency. The response is inversely proportional to the

mode acoustic resistance at resonance. Since all the resonances in air

occur for ka > 10 , the modal acoustic resistance r (w) approaches
an n

" ' "' " .' ,'' 77 ' ..
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the characteristic impedance (pc) air  0.168 x 10- 3 . Thus, the

amplitude of the modal admittance, theoretically, is approximately the

level of i/(pc)air * For a damped shell with a structural loss

factor of nE = 6 X 10-4  for duralumin, the structural modal

resistance r mn(wn ) at resonance has a very small value (see

Tables 3.6 and 3.7). Since r mn(w n) is smaller than the acoustic

modal resistance r an(w n) , the DPA is not significantly changed by

the inclusion of a small structural damping. Figure 3.1 shows the

modal mechanical and acoustic resistance of the duralumin spherical

shell in air at resonance. It is evident that the modal acoustic

resistance dominates over the mechanical resistance, because the latter

is due to the small structural damping. The minimum at ka = 25.303

in the curves is due to the fundamental membrane resonance n = 0 of

the upper branch. The modal admittance at that frequency is almost

30 dB below that of the lower branch resonance in the neighborhood.

This is not because of the total modal resistance r , but because

of the low mode number (n = 0). As seen from Curve (3) of Figure 3.1,

the response is considered flat within 3 dB. For the driving point

modal admittance, the mode factor (2n + 1) in Equation (3.12)

amplifies the differences between the upper and lower branch modal

response.

When in water, this situation changes completely. First, the

lower branch resonances remain within the lower frequency range for

high mode numbers up to n = 43 , as shown in Tables 3.8 and 3.9,

because the acoustic modal mass M an(W n) are comparably large. The

upper branch resonances are, of course, in the high frequency range

except for the first few resonances. Second, the acoustic modal
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resistance r an(w n ) is much smaller than the characteristic impedance

(PC)water = 5.79 , and decreases with increasing mode number (see

Figure 2.4) while it is near the characteristic impedance at the

frequencies of the upper branch. This means that the modal admittance

increases as the mode number and natural frequency increase. However,

modes of the upper branch may not show up as sharply. The contribution

of the resonant modal term of the lower branch to the DPA is larger

than that of the upper branch. Finally, the internal damping will

cause the admittance to drop, but not significantly. Figure 3.2 shows

the resonant response of the modal structural resistance, acoustic

resistance, total resistance, and admittance in water. The modal

mechanical resistance rmn increases slightly with increasing

resonance frequency. The modal acoustic resistance r initiallyan

decreases sharply with increasing resonance frequency, which corre-

sponds to the lower branch resonances, but eventually increases to pc

as the mode number and the natural frequency increases. All the upper

branch resonances have modal resistance of pc because the normalized

resonances of the upper branch (k a) are larger than n (see Figuren

2.4). The resonant modal admittance is thus mechanically controlled

except for the first few lower branch resonances and all of the upper

branch resonances. The resonant modal resistance and admittance for a

shell vibrating in water are much higher than those in air except for

the first two modes as shown in Figure 3.1. Again, the factor (2n + 1)

accounts for the difference. For example, the first resonance in air

occurs at ka = 10.633 , for n = 2 , and the modal admittance is

13.1 dB, while for ka = 10.665 , corresponding to the n = 32 mode

when the shell is submerged in water, it has a modal admittance of

A
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38.8 dB. However, if one were to compute the modal admittance for

much higher mode order (and resonance), the modal resistance in water

would be much higher than that for air, and the modal admittance in

air would be much higher than that in water.

Theoretically, the largest contribution to the lower branch

resonance comes from the resonant modal term of the lower branch,

while the resonant modal term of the upper branch is dominated by the

adjoining resonant modal terms of the lower branch. Summation of all

modal terms gives a resultant DPA as in Equation (3.12), which should

include the resonant modal term. This also applies to the pressure

field in Equation (3.13), although the Hankel function converges well

when n > ka .

The magnitude of the DPA is shown as a function of ka in

Figures 3.3 through 3.10 for two shells which are submerged in both

air and water when both membrane and classical theories are considered.

In air, Figures 3.3 and 3.4 show that the DPA of shells, h = 0.0514"

and 0.1069", are not significantly different for a membrane shell

theory (whenever the membrane or classical theory is employed, they

are conveniently called membrane or classical shell, respectively).

The main feature of these two curves is that the resonances are so

clustered together (high resonant density), as shown in Figure 2.6,

pthat the curves exhibit no distinct resonant response except at

ka = 14.59 . This is the frequency limit of the lower branch of the

(membrane theory. Thus, there is an infinite number of modes near this

frequency. This explains the large peak at that frequency, because

the energy in the shell is concentrated near that frequency. Since

all the resonances are close to this frequency, even for the first

.......
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resonance, no distinct resonance response can be observed. The non-

normalized thin shell admittance is approximately 6 dB higher than

that for the thick shell because the mechanical impedance of the thin

shell is approximately half of that for the thick shell, see Equation

(2.26). However, the normalized thick shell response in Figure 3.4 is

6 dB higher than that for the thin shell response because the ratio of

the normalization factors used for the shells is approximately equal

to 4, which accounts for the 12 dB difference. The minimum response

at frequencies less than the first resonance corresponds to the first

anti-resonance between the rigid body frequency (Qi = 0) and the first

resonance (02). Thus, for frequencies below the first anti-resonance,

the motion at the center of gravity of the freely suspended shell is

governed by a term Yo = l/z = /i M , where M is the total mass of

the shell. Therefore, the slope of the response is 6 dB per octave.

For classical shells, the resonances are well-spaced, and the resonant

response shows distinct peaks in Figures 3.5, 3.6A, and 3.6B.

When the shells are submerged in water, the DPA curve is quite

different from that in air. For a membrane shell, the resonance

increases slowly with the increasing mode number as shown in Figures

3.7 and 3.8, while the peaks at the resonances are distinct for

resonances up to ka = 3.3 . All the remaining resonances are located

close to this frequency, which means that the energy is concentrated

near this frequency. Thus, no distinct resonance response is observed

above this frequency. The upper branch modes have a low admittance,

so that they do not produce peak response at their resonances, which

occur mostly above ka 3.3 . However, sifice the lowest mode (n = 2)

resonance is less than ka = 1 , the resonance peaks are distinct since

il , .. ± .=..,_ . ,,. .. . .. _ ." . ' ' ' . - . . . . . . . . . . . . .. .. ". . .. . . ..
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they occur at frequencies far enough below ka - 3.3 . The resonant

response increases monotonically up to ka = 3.3 due to the factor

(2n + 1) in the expression for the admittance. The curves for

classical shells are shown in Figures 3.9 and 3.10.

Generally, the height of the DPA response in air is higher than

that in water below the first resonance. This is explained by the

fact that the virtual mass of the displaced acoustic medium at low

frequencies is negligible in air when compared to the mass of the shell

but is much higher than the mass of the shell vibrating in water.

Thus, since the admittance below the first resonance is I/wM , M

being the total mass being vibrated, the admittance in air is much

higher than that in water. However, the admittance of the shell at

resonances is lower in air than in water because of the previously

explained behavior of the modal admittances in air and in water.

The minimum point in Figures 3.3 through 3.10 corresponds to

anti-resonance between the rigid body motion frequency (0-=0) and

the first resonance. It will shift due to the position of the first

resonance. The position of the first resonance of the shell in air

is the same for all shell thickness, so that the anti-resonance does

not shift. However, the first resonance of the shells submerged in

water is almost one-tenth of that in air, so that the location of the

anti-resonance shifts down accordingly.

In vacuo or air, the mean value of the DPA for a shell will

approach the value of the characteristic impedance of an infinite

plate. The result is shown in Figure 3.6B. The line MN in the

resonant spectrum is the predicted mean value computed by Equation

(2.58). The resonant mean value is in excellent agreement with the

j f;

*~ 4*' W I



89

line MN but the predicted mean value in the first few modes of the

membrane range fails to agree. This is because there are so few

resonances in the membrane range.

The mean value method can also be used to predict the mean

value of the DPA of a shell in water. However, it has to overcome

the difficulty due to the introduction of the virtual mass in the

equation of motion. At very high frequency, the mean value of the

DPA of a submerged shell again approaches the unloaded plate value.

As previously discussed, the fluid loading is so important

that it affects the frequency spectrum. The role it plays in the

directivity pattern is to change the amplitude of the pattern but not

the shape. Figures 3.11 and 3.12 are the directivity plots of the 2nd

mode at their resonances, ka = 1.0307 in water and ka - 10.659 in

air, of a shell with thickness h - 0.1069". All the peaks shown in

Figures 3.3 through 3.10 represent resonances of the lower branch.

Figures 3.13 and 3.14 show the modal shapes for the resonance of the

4th mode of the upper branch, and at ka = 14.886 for the resonance

of the 29 th mode of the lower branch for a shell with thickness

h = 0.1069"in water. Close examination of these two mode shapes show

that the 29th mode of the lower branch predominates the shell vibration

response at ka = 15.745 which should have exhibited a 4th ordered

mode.

The pressure field in water is higher than that in air since

the acoustic resistance in air is much larger than that in water. The

symmetrical resonant shape, and the mode number of a directivity

pattern are information to be used to properly identify a resonance

experimentally.
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3.3 A Spherical Thin Shell Insonified by an Acoustic Spherical

Wave in a Fluid Medium

In order to have a better understanding of the elastic scatter-

ing response of an elastic spherical shell as being insonified by a

spherical acoustic source, a discussion of the rigid and the radiated

scattering of a scattered field is given first. For an elastic

structure, the observed pressure field is not only the sum of the

incident pressure pi(r,O) and the blocked (rigid) scattered

pressure ph(r,e) as scattered by the boundary of the structure, but

must also include the radiated scattered pressure due to the response

of the vibration of the structure generated by the incident wave. The

resultant pressure is, therefore,

P = Pi + P s (3.14)

where the scattered pressure is:
iS

Ps = Ph + P r

The geometrical configuration of the system is shown in

Figure 1.1. The source is located at a point S on the positive

z-axis, at a distance r from the shell's center. The observer0

point is located at a distance r from the center and 0 degree off

the z-axis. The system is assumed to be axisymmetric. Expanding the

Akd
spherical acoustic source pi = e /(47d) in terms of Legendre

function Pn (n) in the spherical coordinates [20], one has:nd

J.

t5,
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Pi M eikd (47ad)

= (ik/2r)h (kd)

0 i~n (kro)hn(kr) r > r°

= (ik/47r) I (2n+l)P n(n)
n=o

[ jn(kr)hn(kro) r < r°

(3.15)

where k w/c , jn and hn are, respectively, spherical Bessel and

Hankel functions of the first kind and of order n .

First, the scattering by a rigid sphere will be evaluated. The

rigid scattered pressure ph is the pressure field from the surface of

the shell considered as a rigid sphere. It can be written in the

following form:

Ph I Dn h n(kr)P nC1) , (3.16)
n=o

where D is an undetermined coefficient. Therefore, the resultantn

pressure pih due to the boundary reflection and the incident pressure

Pi is:

Pih = Pi + Ph " (3.17)

On the surface of the shell r f a ,the resultant particle

velocity must vanish at the radial direction

Wih = 0 (3.18)

The continuity condition on the spherical surface requires that

the radial component of the shell velocity equals the particle velocity

at the boundary as follows:

'.4
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3 Pih
= , at r a . (3.19)

Applying the boundary condition, one has:

P-i + Ph 0 at r= a
Dr Dr

Substituting p i and ph from Equations (3.15) and (3.16), the

undetermined coefficient D is obtained as:n

j'(ka)
D = - (ik/47T)(2n + 1) h,(ka h(kr)

n

where j' and h' are the spatial derivative of j and h along
n n n n

the radial direction, respectively. Substituting D into Equationn

(3.16), this gives the scattered pressure field from a rigid sphere:

00h (kr)

Ph Tfk (2n + 1)Pn ()j n(ka)h n(kr) h (ka) (3.20)Ph - 4 rn nnh (k ) ( . 0
n=o n

For the scattered pressure from an elastic spherical shell, the

radiated scattered pressure of the shell pr can also be expressed as

harmonic outgoing waves in the form of Equation (3.16):

Pr= Bnh n(kr)Pn (n) , (3.21)
n=o

where B is the expansion coefficient to be determined. The radiatedn

pressure must satisfy Euler's equation on the surface (r = a) as:

- r -a-* (3.22)

The response velocity W on the surface of a submerged shell is equal

to the ratio of the resultant pressure on the surface to the mechanical

I.

- .-----€
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impedance. The ratio, given in the form of Equation (3.5), is:

Pin + Phn + Prn
n 

z
m

where the pin ' Phn ' and prn are the modal terms of the pi

Ph 9 and pr " respectively. And prn m Z W is obtained from

Equation (3.6). Thus,

Pin + Phn
Wn Z +Z (.3

an Mn

Substituting Equation (3.23) into Equation (3.22), one has:

aprn ipw Pin + Phn (3.24)
3r Z

n

Finally, substituting Equations (3.14), (3.20), and (3.21) into

Equation (3.23), one obtains the coefficient as:

h (kr)
PC n 0

B = i (2n + 1)
Orn 4a 2k (Zan + Zmn)[hn(ka)]

From Equation (3.17), the radiated pressure field becomes:

00' h (kr )h (kr)
P fi C (2n + 1)P (n) n. (3.25)

F r = lan n Zh(a] 2 -

Substituting Equations (3.20) and (3.25) for ph and p into

Equation (3.14), the total scattered pressure is expressed as:
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0 oh (kr )h (kr)
Ps - - (2n + 1)Pn(T) h'(ka)

n=o ni

[j '(ka) - 2PC

(ka)2h' (ka)Z
n nl

= -- (2n + 1)P (n)h (kr )h (kr)
n n o nn~o

i(ka) - I 'j '(ka)
x n P n (3.26)z

(ka) - I mn hn (ka)
[n Pc 

From Equations (3.14), (3.15), and (3.26), the total pressure p of

an elastic thin spherical shell driven by a spherical acoustic source

is:

ik ~ h n(kr) ~in(kro)

ik (2n + l)Pn (n) I
n=o hn(kr 0 n(kr)

h (krmn '(ka) r > rhn o) jn(ka) -i-j- n -
n 0 in Pc n 0

Z . (3.27)

h (kr) h (ka) i mn h'(ka) r < r
n n Pc n 0

The result as given by Equation (3.27) can also be derived [8]

by using the technique of Hamilton's variation principle. However,

the result obtained by this technique does not give specific physical

interpretation about the rigid scattering pressure, the radiated

scattered pressure, or the relation between them. In contrast, the

derivation previously given in this section can give a detinitive

physical insight of the contributions to the scattered pressure. For

- -- ,...i*;."*
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a submerged, elastic spherical shell, the scattered pressure is the

sum of the rigid and the radiated scattering as shown in Equation

(3.26). The radiated scattering is a result of the characteristic

of an elastic structure. It may be called "elastic scattering."

The characteristic of the elastic scattering is that the

radiated scattered pressure pr changes rapidly with resonant

frequency. Since the IM(Z + Z ) varies rapidly near resonance
an mn

in Equation (3.25) and vanishes at resonance while the factor of

-1(Z + Zn) changes slowly, the radiated pressure p is dominated
an mnr

by Z and fluctuates rapidly with frequency. The rapid fluctuation
n

in the pressure is the result of the structural resonances as the

reactance M (w ) of the mechanical impedance is well-coupled tomn n

the ractance M an(w n) of the acoustic impedance. The radiated

pressure spectrum is similar to that of the DPA. Both the radiated

pressure and DPA spectra are controlled by the total impedance Zn

More precisely, these represent the response of the motion of the

shell's surface to the incident pressure. However, the radiated

pressure in Equation (3.25) is not only controlled by Zn , but also

by the characteristic impedance pc . The frequency spectra of the

pressure field of an elastic shell excited by an acoustic point-source

were computed for two different shell thicknesses whether submerged

in air and water, and the pressure evaluated at a = 0* and 1800.

In the illuminated zone, the total presire is composed of the

direct field, the reflected field, the diffracted field due to creeping

waves around the shell, and the radiated field due to the vibration of

the shell. The reflected and diffracted fields combine to generate

I."
t _ _ __ _ _
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the blocked (rigid surface) scattering Ph Thus, the first four

fields are present in the scattering from a rigid sphere. The

creeping waves of the diffracted field, which exists for ka > 1

are usually weak and thus are not noticable in the illuminated zone.

However, since the creeping waves are the only waves existing in the

shadow zone for a rigid sphere, they interfere destructively and

constructively as a function of the acoustic wave number ka . If

the radiated field, which is proportional to the characteristic

impedance pc of the medium, is high, then it predominates in the

illuminated zone and the shadow zone, especially near resonance

frequencies.

In air, the scattered pressure from an elastic shell in the

illuminated zone (0 = 0) is shown in Figures 3.15, 3.16, and 3.17.

It can be seen that the rigid sphere is dominated by the direct and

reflected waves; hence, no fluctuation in the frequency spectra are

noticeable as was reasoned above. Since the characteristic impedance

of air is low, the radiated pressure, even near resonances, is too low

when compared to the scattered pressure from a rigid sphere. Hence,

the total scattered pressure of a spherical shell in air resembles

that of a rigid sphere in the illuminated zone.

In the shadow zone of a spherical shell in air, the scattered

pressure in the low freq:iency range is that of long wavelength

Rayleigh forward scattering (ka << 1) which increases with frequency

as can be easily seen in Figures 3.18, 3.19, and 3.20. In the high ()

frequency range, the creeping waves are the only contributor to the

field in the shadow zone of a rigid sphere. The constructive and

destructive interference can be seen for a rigid sphere for ka > 1



101

I
Ur

Total field
+ + Rigid field

N-

I Radiated

I

N.

= I

-- I I I IIIIII I I I IIIIII I I uIuI I I I I IIIIII

'D. 13 0. 10 1.0 ID. r 0i0L DO
DIMENSIONLESS FREOUENCY (KA)

Figure 3.15 Frequency response of a membrane shell
with thickness h = 0.1069" in air for

ro 8.25" r=8.5" 0and e 0

- ,rw-an
O ; -

• . .- ,o ",. .;



102

N-

Total pressure

Lk + + Rigid pressure

N,

rA I

L~a

cc Radiated

4.

'L 131 E.10 1. 0D 10.100 100. 00
DIMENSIONLESS FREOUENCY (KA)

Figure 3.16 Frequency response of a classical shell

with thickness h = 0.0514" in air for (
r =8.25" r=8.5" and 0 =0

, , A) ..$ " '



103

c'

-Total pressure

++ Rigid pressure

"Ik

CL Radiated

4

70.011 a.IDa 1.00n 10.00 10D.00o
DIMENSIONLESS FREQUENCY (KA)

Figure 3.17 Frequency response of a classical shell
with thickness h =0.1069" in air for
r 8.25" r r8.5" ,and 0 0*



104

A Total pressure -

pres sure

%. Radiated +
Wi

22

'n.D U1B 1.U an 0.0 1GO.O
DIMENSIONLESS FREQUENCY CKA)

Figure 3.18 Frequency response of a classical shell 7
with thickness h = 0.0514" in water for
r =8.25" , r =8.5" ,and 0=00

LA4



105

N'

Total pressure +Rigid pressure

- Radiated

L a

CL.

[L 0l1 I.110 1.0DD 10. an 103.100
DIMENSIONLESS FREQUENCY (KA)

Figure 3.19 Frequency response of a classical shell
with thickness h = 0.1069" in water for
r =8.25", r=8.5" ,and 0=00

0



106

Lk'

* Total pressure

...Rigid pressure

S%n

IL

Radiated

0. 01 0. 10 1.00oIa 10.0 1100.003
DIMENSIONLESS FREQUENCY (KA)

Figure 3.20 Frequency response of a membrane shell with
thickness h = 0.1069" in air for r =8.25" ,

r =8.5" ,and 0 =1800



107

However, the radiated field, while weak because of the characteristic

impedance of air, is comparable and sometimes dominant over the weak

creeping waves. This is clearly seen in Figures 3.8 through 3.20,

where the resonant radiated field is dominant over the creeping waves

for ka > 10 , where all the resonances of the shell vibrating in air

occur.

In water, the scattered pressure from an elastic shell in the

illuminated zone (e = 00) is shown in Figures 3.21 and 3.22. Here,

the low frequency scattering below the first resonance of the shell

is still dominated by rigid scattering. However, since the character-

istic impedance of water is so much higher than air (+72 dB), the

radiated pressure becomes dominant, even in the illuminated zones at

the resonances of the submerged shell. This is more so when one

examines the scattered pressure spectrum in the shadow zone (e = 1800)

in Figures 3.23 and 3.24. The radiated pressure is higher than

scattering by a rigid sphere by 30 dB in the low frequency, by 85 dB

at resonance in the mid frequency range, and by 60 dB in the high

frequency range.

In conclusion, the backscattered field (i.e., the illuminated

zone) of a spherical shell in air can be represented by a rigid sphere.

However, this is not true in water, where the resonant backscatter can

be 60 - 85 dB higher than a rigid sphere for ka > 1 . Thus, it

can be stated emphatically that submerged elastic structures insonified

in water can generate a much higher backscattered echo than a

correspondingly sized rigid object. Furthermore, the elastic resonant

scattering is even more pronounced in the shadow zone for structures

insonified in air or in water. This means that structure-borne sound

g*
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is predominant over rigid scattering in the shadow zone. This also

means that measurement of the scattered pressure from an elastic

structure in air cannot be used to predict the scattered pressure in

water.

Figures 3.25 and 3.26 show the fluid loading effects on the

directivity of the nearfield pressure. They both represent the

resonant directivity patterns (n - 2) of the shell submerged in

air and water, respectively. In air, due to the dominance of the

blocked pressure over the radiated component, the pattern does not

exhibit the n = 2 mode form. Instead, the pattern has fluctuations

corresponding to the constructive and destructive interference of the

creeping wave around a rigid sphere. In contrast, the directivity of

shells in water gives the expected modal pattern n = 2 because the

radiated pressure dominates the blocked component and has the expected

number of nodes.

By examining the directivity pattern of the shells for extremely

low, mid-range, and extremely high frequency, more information about

the response of the elastic shells is obtained. For the case of a

spherical source located at r = 8.25" and a field point located at0

r = 8.5" (both distances from the surface are less than one wave-

length), the pattern of the submerged shell at extremely low frequency

ka = 0.2 , which is below the first resonance, is shown in Figure 3.27,

behaves like that of a rigid sphere in the illuminated zone. This is

because the rigid component is much stronger than the radiated field

at low frequencies below the first resonance. As the field point

moves away from the source around the sphere, constructive and de-

structive interference occurs. The pattern in water is approximately
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" Figure 3.27 Directivity pattern of a shell with
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water for ka = 0.2
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the same as that in air, although the former decreases in the

illuminated zone and increases in the deep shadow zone. Near the

ring frequency, e.g., for ka = 14 , the observed field in water (see

Figure 3.28) exhibits the n = 29 radiated resonant pressure pattern,

while the observer field in air again exhibits a rigid diffraction

pattern.

(-
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Figure 3.28 Directivity pattern of a shell with
thickness h = 0.1069" in air and
water for ka =14
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CHAPTER IV

THE GEOMETRICAL THEORY OF DIFFRACTION (GTD)

4.1 Introduction

In this chapter, a different approach is taken to solve the

scattering problem of a submerged spherical shell at high frequencies.

The procedure used is to compute the acoustic field for a sphere with

an impedance boundary predicted by the GTD method and compare the

levels with those determined from an exact solution.

In the previous chapter, the pressure field of a submerged

spherical shell, insonified by a spherical wave, is expressed in the

form of a wave harmonic series. If the wavelength is small when

compared with the dimension of the shell (large ka), the sum of the

modal terms are, therefore, poorly convergent. One may need as many

as 2ka terms to attain reasonable accuracy. Because of the slow

convergence, the wave-harmonic method is not practical at high fre-

quencies. Therefore, asymptotic high-frequency approximations must

be employed. One of these high-frequency approximate methods is the

Geometrical Theory of Diffraction (GTD).

In the 1950's, Keller made a significant extension of the

geometrical optics by including diffracted rays to describe the

diffraction when the scatterer has edges, corners, or vertices, or

when it has a smoothly curved surface. He has studied the spherical

problem (131 by employing the GTD method. In this paper, the rays

penetrate into the shadow zone and account for the non-zero field

there, and also modify the illuminated field. The diffracted field
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is obtained by multiplying the incident field at the diffracted point

by a diffraction coefficient. This coefficient is derived from the

exact solution. The GTD solution for a sphere is not adequate to

predict the field at caustics. In order to have a valid solution near a

caustic, the correct field is obtained by multiplying the GTD solution

by correction factors [131.

Another high-frequency approximate technique is applied to

evaluate the scattering field generated by those canonical shapes for

which an exact solution is available. This technique was developed by

Watson [21] about 60 years ago to solve the problem of radio wave

diffracted into the shadow zone of the earth. He solved this problem

by converting the slow convergent wave harmonic series into a complex

integral. And solving the complex integral by residue method has led

to a fast convergent series.

For large ka , both Keller's and Watson's method are adequate

to solve the scattering field of a submerged spherical shell insonified

by a spherical wave. For examining the problem of both the source and

field point located near the surface, the Watson transformation will

give a straight mathematical solution.

4.2 The Watson Transformation

Consider the forward scattering of a submerged elastic shell in

Chapter III; the pressure field has the form:

f(n,n) I (2n + l)f(n)P (q) (4.1)n
n=o

where

M-M

M
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k{ flJn(ka)}
) ikhn(kr) ji (kr) hn(kr r > r
0 = h (ka) n 0 r

(4.2)

Jn= jn (ka) - iZ aJn'(ka) ,

= h (ka) - iZ h' (ka)hn a n

Za  = Zmn /PC

where the function f(n) is assumed to be regular, and Z is a
a

function of n and ka

When converting the wave harmonic series into a contour integral,

the integral of P (cose) does not converge at e = 7 for non-n

integer n because the integral has a line of logarithmic singular-

ities along the line 0 = 7 [22]. Thus, one can choose the spherical

harmonic function P (-cosO) , by using the relation:
n

P (-cose) = (-l)n P n(Cose) , (4.3)

which holds for integer n .

Taking a contour C enclosing the poles on the positive real

axis in a complex s-plane (Figure 4.1), Equation (4.1) is transformed

into such a complex contour integral:

sf(s - 42)P (-cosO)
2 ds = 27 R (4.4)

C cos sTF i

where (-l)n  is proportional to cos(sr) , s = n + ,
2'

n = 0, 1, 2, .... The negative signs on the right-hand side of

Equation (4.4) indicates the contour is clockwise.

* V

, • * . -. ,
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The residue R is expressed as:n

sf(s - 1)P -
R
n d (Cos sir)

n

1
Sn f(s - -PP.

n

1 1(2n + 1)f(n)(-i)nPn(r) / [- i(-) n ,

1 (2n + 1)f(n)P (n) / (- T) (4.5)2n

From Equations (4.4) and (4.5), one obtains the harmonic series

in terms of the complex integral: s
sf(s )P )

(2n + 1)f(n)P() = ds
C1  cos (sT)

(4.6)

The next step of the Watson transformation is to deform the contour C1

into C2 which avoids the poles on the real axis, but includes the

poles of h n(ka) [Equation (4.1)]. Replacing s by -s in

Equation (4.6), and by using the properties:

Ps l(cose) = P_sl (cose)

h s-i (x) = e-iS'h s-i (x)

h' (x) = e-iS h's (x) >>

f(-s) = - f(s) , (4.7)

and the integrand is an odd function. The lower half of contour C1

is, therefore, deformed into an equivalent path shown as the broken line

.. ...
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in Figure 4.1. Thus, the contour C1 may be replaced by a straight

line C . The poles of the function f(s - 1) are enclosed by the

new contour of the integral formed by the path C2 and the semi-

circle C. as shown in Figure 4.2 (a detailed discussion of the

choice C. is given in Nussensveig's paper [23]). The contribution

to be integral from C2  is zero since the integrand is an odd func-

tion, and the integral vanishes along the path C. as the radius of

the semicircle approaches infinity (see Watson and Nussenzveig). The

only contribution comes from the poles enclosed by C2 and C.

The poles are the zeros of the denominator Qh (ka) , which mays

be expanded in a Taylor series about the zeros s :n

Qh (ka) = Qh (ka) + (s s s [+h(ka) +
j S s=s nn n(4.8)

It is obvious that at s = sn

Qh (ka) = 0s
n

or

h (ka) / h' (ka) = iZ (4.9)ss an n

where Z is assumed to be a function of ka only. This approxima-
a

tion of Z is to be used in this study henceforth. The residue is
a

the coefficient bI of the term (s- s)

bl [Qhs(ka) (4.10)

n

because Sh (ka) has simple poles only. Equation (4.9) is the
5

boundary condition of the sphere. For a rigid sphere, Z approaches
a

an infinite value. It implies that h' (ka) = 0 . On the other hand,
n

the sphere is called "soft" when Z or h (ka) vanishes.
a s

n

* ,.



124

vRe (s)

Figure 4.2 Contour of the integral in Equation (4.6)
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By applying the residue theorem, the contour integral in

Equation (4.6) may be expressed in terms of a residue series:

; (2s + 1)f(s)P S(-ni) C2T (s) ,(.1

- sin Ors) s = 21 (411

where

G (s) Lk-h (kr) (r)h (ka) - IJ5 (ka)h (kr0)

(2s n+ l(P s(-n)
n

X sin(ns n

The pressure field of the sphere is expressed as:

n=o

CUs n+ 1)P (-n~h S (kr)[j5 (kr )Qh CI(k)-Q Sn (ka)h5 C kr 0)]

sin (s IT) Oh~ (4hka)JI
n

(4.12)

By using the result in Equation (4.9) and

1 (1)(X (2)

in Wx = Ph n x)+)In W

one may reduce

is Ckr )Slh (ka) - Qj h (kr) =!h (kr .-h( (ka)
S 0 S Sn Sn 0 2 s o s

(4.13)

Substituting the result in Equation (4.13) into Equation (4.12), one

obtains:

6..
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(2s +1)P (-TI) Qh (2 ) (ka)
On n2n

= I n h (kr)h (kro  n
8sin (Trs) S n k 0n o nn n -s [ Rstka)ls~s

ni

(4.14)

where

Oh (2) (ka)
n

- [h(ka)]s=s
n

is proportional to the diffracted coefficient expressed in the GTD

method [13].

At high frequencies, and ka 2 s , this term and Equation (4.9)
n

can be expressed in terms of Airy function approximately (see Appendix

B). The numerical computation is evaluated on the computer by

applying the method derived by Bremmer [22]. The numerical evaluation

will be discussed in the following section.

The pressure field expressed in Equation (4.14) is only valid

in the shadow zone of the sphere because the choice of the spherical

harmonic function [21, 22, 23, 24]. According to the geometrical

optics, the shadow zone of a sphere is a zone in which there is no

direct ray. Therefore, the zone is determined by the distance of the

source from the surface and the location of the field point. Mathe-

matically, the shadow zone, in terms of the observer angle 0 , is:

7 < 0 < cos-1 0-) + cos - I  (4.15)r r
0

When the source and the field point are located near the surface of

the sphere, the order of the Hankel function becomes comparable to

the argument. For this case, the Hankel approximation of the Hankel

......" ..... i i7
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function will be employed [see Equation (B.4) in Appendix B]. Thus,

the Hankel function in Equation (4.14) is expressed as:

IT

h (kr)3% 2 3 1/3 (1)
(krkr e (f-) A[q.s 4k ~n'

n

and
h (r)% / - -3 6 1/3 (2)]

h s (kro) lv - / e A[q n (4.16)

n o o

for s kr or kr , and large s , where A[q n1

are the Airy function, and

(1) = [(ka - kr)(6)1/3e
-  + qn(ka)i/3 ](kr)-1/3

and
(2) (61/3e- 3 1n/3a-i/3]

qn = [(ka - kr )(6) e + (k) 3 (kr o-i/3

(4.17)

where qn = (6/ka)/3e-/ 3 (s - ka) . As kr (or kr ) > IsnI

the Debye approximation [25] of the Hankel function is appropriate.

The expansion is valid as the source and/or the field point is not

located near the surface. The Debye approximation is expressed as:

2 2 1/2 -1
1/21/2 2 -1/4 ik(r -a2) -is cos -(a/r)

=(kr) (kr) k-I 2 (a - r) e n

n

(4.18)

The spherical harmonic function P (-cosO) is equal to unitys
n

at the antipode. At the other observer angle in the shadow zone, it

is expressed as [22, 23]:

llama "



128

P -Cosa) 2 ~si~O costs (IT - 6) 21

is (T-.O)-i-i -isa (Tr-8)+iZ
% en 4 +e n4

~ e (4.19)
vr2ii ka sine

The term sin(Trs n can be expressed as:

nn2

where pi = s+ , then I.j s for large ka

Making use of the above relationships, the pressure field in

Equation (4.14) gives:

(1) At the antipode, 0 = 7

(A) As (r -a) and (r 0- a) > X (wavelength)

ikvr -a2 + ikr - a ilT
0 0 n

= -ae e

p =4'2 2 2 2 no i2i -T
2,,'+7 /(r - a )(r -a) + e

0 0

xe n r n r n

(4.21)
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(B) As 0 < (r -a) and (r -a) <X

)2/3-1 1/3 2Tr ipa'r
_ (6)7-k ae 1 3 e

(rr 0) 56 n=o 1 + e1Vn

QH()(ka)
x A~q~l)]A[q (

2 )

(4.22)

(2) At an arbitrary observer angle in the shadow zone

j (A) As Cr-a) and Cr0 - a) >X

1/2 ~ 1k[r- 2 + /r2-a2]

a 1/2 6 iCr -a r -a )
o

i2p1TT
n=o + n

A) -a £QHC 2 (ka)
-iv [cos r+cos - ]

x e o

9[H)(ka)] 
_

(4.23)

.~., A
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(B) As 0 <(r -a) and (r -a) <A

- 2(6 2/3 a1/2 k1/3 r- 1e 6)

/8lrkrr 0sine (rr) )1/3

n 4 n14

XV e i+ (424

(ka) (2h (ka)

nn an1

%Tte SkaI/ rA' (k)2

nn

in Ap ndi B].

=Q (ikc)~ (4.25)h(1 (a

n Tn

whee i adeayftore fo acosi prpaa3o whc deedso

eas [0 n cos (ar - c fs r arge inEato (4.23 Eut orB.3

exp{ijj [TV - cos- (air) - cos- (alr 0)j) in Equation (4.21) is the

combination of the phase change and the attenuation of the surface

diffracted ray between the incident point on the surface and the
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launch point. When both the source and the field point are located

on the surface, the ray path on the surface increases such that the

terms cos- (ar) and cos (air0 ) vanish as r = r = a . The termi21 nt-

(1 + e ) represents the sum of the rays traveling along the

surface n times, where n approaches infinity. Finally,

Q(2) (ka) / (/)[QH(l ) (ka)] n is proportional to the diffraction
Pn

coefficient.

For the case of the near field, the computation of the pressure

field in Equations (4.22) and (4.24) takes a relatively longer

computation time. Therefore, the tangent approximation of the Hankel

function is used. For practical purposes, the tangent approximation

is good enough for the accuracy.

The tangent approximation is expressed as:

. r- 1-
h~z) i (2 )3/2}

h (Z)2e cos ( + - (2T) 3 , (4.26)P z 5/64 4 3

where P = z + zl/2T . For both the source and the field point located

at a distance less than a wavelength from the surface of the shell, the

T in Equation (4.26) is a value corresponding to the arguments kr

kr , and ka . It is expressed as:o

= kr + (kr)i/3T1

or

11 = kr + (kr) 1/3T 2  (4.27)

Also,

0 = ka + (ka)1 /3 T (4.28)
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Combining Equations (4.27) and (4.28), T1  and T2  can be expressed

approximately as:

T - (X1 - 2T) / 2

and

T - (X2 - 2T) / 2 , (4.29)

where X = (ka)2/3 (2h1 /a), hI = r - a

and X2  (ka) 2/3(2h2 /a), h2 =r - a

Substituting Equation (4.29) into Equation (4.26), the tangent

approximation of the Hankel function for the arguments kr and kr

0

can be rewritten as:

7r 1 3/2
2cos[- + .(X1 - 2T) / 2

h r 1/2 1/3 1/4(kr) (ka) (X1 - 2T)

and
iT 1 23/2

2cos[I + -(X - 2T)3]

P1 o (kro)1/2(ka)1/3 (X2 - 2T)1/4  (4.30)

Following the procedure for deriving the near field and by applying

the tangent approximation, Equation (4.30), the nearfield pressure is

obtained from Equation (4.14) as:

2/3 5 Ti/6 O e iln cos1 cose2
%\ iir(ka) e e_ _ 1 2613 1/2 1/2 no 2ii 1/4

61/3a(kr) (kr) I + e n (KIK2)

2 2 ~ 12

x {3[A'(q)] 2 + qnA2 (q)} -  , (4.31)

... ..... ......
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where

1 i 1 3/21

it 123/222  + 1
2 4 3 2

KI = 2 T1 -2 n

K2  = 2  n

IT
3 /3= q e / 6 1

n n

and

VPn =ka + (ka) /3 
tn

4.3 The Method of Computation and Numerical Analysis

4.3.1 The Method of Computation. In order to evaluate

numerically the pressure field in Section 4.2, the roots of the Airy

function A(q n) have to be computed. The method used in this

calculation was developed by Bremmer [22].

The boundary condition for the elastic sphere in Equation (4.9)

is:

H (1) ' (ka)
n iZ (4.32)

H(1) (ka) 
a

s
n

As shown in Appendix B, this relation can be simplified by applying

the Hankel approximation for (s - ka)/ka < I , and Equation (4.32)

becomes:

A(q ) r-
n e~ 6 kal1/3 Z-1 (.3

A(qn) - e Z 1  (4.33)

t

*'1,.
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where the Airy function is defined as:

A(qn) = Fcos(t 3 -qt)dt

0

and A' (q n) is the derivative of A(q n By making use of the

tangent approximation of the Hankel function:

17 t

H (ka) ' 2 1 e 4 iT 1 3/

H sn (a) T 1/2 (ka) 1 4 (s n- k)1/4 CosHW + -(-2T n)32

n (4.34)

and 3H()(a 
1

5/4~ka e*7-2T/2(a)/

~(ka ) 7Tl12 (ka)(s n- ka) 1 4  n~z12k~/

x sin[. +-!(-2T )3/2] (4.35)

Equation (4.32) becomes:

7Ta + ~ ~ 3/2] 1 a1k)1/3(2n 1/2 . (4.36)

This equation may be solved more easily than Equation (4.33) for the

zeros T n, although it is less accurate than Equation (4.33).

However, for s n > 1 , the A(q n) and A'(q n can be expressed

as [24]:

A rq q) /
n A '(3) / cos[2(-- +

A' (q ) 1/4 4~1

A'(q .17 ' - -~ (3q)1/ sinI2(j!n)32+n

or

n (q n (fl)1/2 ta[(!n)3/2 + i * 47
A(q n) 3 4J[ +(.7
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This equation does not provide an easy way to obtain the roots qn

for an arbitrary value Z a, but it does show that the tangent

approximation approaches the Hankel approximation as Z a or

Z a-~ 0 . These two limiting cases will help evaluate T n for

arbitrary values Za

For Z a approaching infinity, the zeros T n (s nor q ) is

obtained from Equation (4.36):

7iT

1 1 2/3 3
T ,0 (3'r(n +- e

or

(6)1/3 . 12/3 ,,2,.. (38
q ~~[3T (n +n 0,1 2, (.8

n,0 2 4

while for Z a approaching zero:

. 7T

1 ~ [3'r(n+ 2)] 23e
n,o4

or

q (6)l1/3 [ n+3 2/3 (.9

n,o 2 4T4.9

Bremmer [22] has developed a :,,eLiod to compute T for

arbitrary values of Z a[Z = - iZ a(ka)- ] by expanding T n in terms

of T and Z or T and Z . The two series are:
n~co n,o

2 3 1 4 4 5
T T -Z -- T Z + - -T Z(.0

n n,o 3 n,o 2 5 - n,oZ .. (4)

for small Z ,and 1131

Tl 4T 0

~o T2  ,0T Z 2~ 12T 2  3

for large Z 
nC ~ o(.1



136

On calculating q n the first few values of Tn,o and Tn,0

are those obtained from the Hankel approximation; then, for s >> In

the values of the tangent approximations in Equations (4.38) and (4.39)

are used since both approximations are of the same order [see Equation

(4.39)]. There is a criterion for determining when Equation (4.40)

or Equation (4.41) will be employed for a given value of Z . If

Z2T > 0.5 , Equation (4.41) for large Z will be used. Otherwise,
n

Equation (4.40) will be applied.

4.3.2 Numerical Analysis. For this investigation, a spherical

shell with an impedance boundary is being considered. Six different

models for the elastic shell impedance have been used. They are

listed as follows:

(1) Uniform Impedance

ZI = PsCp/PC

where

C = [EP s-1(l - V2) 1/2

(2) Driving Point Impedance of an Infinite Plate

2 -2Z2 = 8a 11 / (2ra Pc)

where

4 2 2= h E / 12(1 - V2)P s

(3) Wave Impedance of an Infinite Plate Excited by Normal

Incident Plane Wave [26]

Z = (PsCp/oc) / (C/C p(h/a)(ka)
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(4) Bending Impedance of the Plate

Z4 = PsVb/PC

1 /2where Vb  , bending velocity.

(5) Driving Point Impedance of a Spherical Shell Excited

by a Uniform Force

1

Z5 00 F

n=o mn

where
2n + 1 71/2 2-2

Fn 4 2nI (l + 1 3 1
2 - n) + + 2

r(n) is a Gamma function.

(6) Driving Point Impedance of a Spherical Shell Excited

by a Point Force [see Equation (3.12)]

4ra 2

PC I (2n + 1)
pc

n=o mn

The procedure of the computation is to calculate the T forn

arbitrary values Z from Equations (4.40) or (4.41), then to calculate

A(qn) and A'(qn) , and finally, to compute the pressure field from

Equation (4.31). The frequency spectra of the pressure field for

spherical shells with the above six different impedances are shown in

Figures 4.3, 4.4, and 4.5. The number marked on each curve indicates

the frequency spectra of the shell with the marked number impedance as

listed above.
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The uniform impedance Z1 has a value of 55.6194, while the

driving point impedance of an infinite plate is 0.0292. They are

shown as Curves (1) and (2) in Figure 4.3.

Comparing Figures 4,3 and 4.4 with Figure 4.5, the frequency

spectrum of the exact solution, the only GTD pressure field that is

close to the exact solution is the pressure field of a shell with a

uniform forced driving point impedance ZI  [see Curve (1) in Figure

4.3]. According to Sachs's study [27], the GTD method gives a very

accurate prediction for a rigid sphere in air. However, the calcula-

tion of an elastic sphere submerged in water is worse when compared

with the exact solution.

The reason for the discrepancy between the GTD and the exact

solution lies in the assumption that the impedance Z is purely aa

function of (ka) and not also dependent on the mode number n

This then allows for water-borne creeping waves around the impedance

surface of the shell. But, it excludes the structure borne creeping

waves, which were shown to be dominant in the illuminated and shadow

zones of shells in water. Since the GTD was to be used for any shaped

elastic shell where an exact expression for the shell impedance Za

is not available, the method does not appear to be useful in predicting

the near field of a general elastic structure in water when the shell

impedance is approximated by any one of the six impedances given above.

L.jMtWI



CHAPTER V

EXPERIMENT

5.1 Introduction

The sound propagation near the surface of an elastic spherical

thin shell vibrating in an acoustic medium due to a spherical sound

source located at a point near the surface has been studied theoretic-

ally in the previous chapters. Both the wave harmonic and the

geometrical theory diffraction methods have been employed in this

study.

This chapter describes experimental techniques for vibration

and sound measurement. These techniques were employed to determine

the sound field near the surface of a spherical shell and the vibration

field of the shell, and to provide experimental verification of the

predictions of the theoretical analyses. The measurements were

carried out into phases. When making experiments in the anechoic

chamber located at the Garfiold Thomas Water Tunnel Building of ARL

of The Pennsylvania State University, the sound visualization technique

was used. The results were expressed graphically in terms of the phase

and directivity plots. When the shell was submerged in the anechoic

water tank located in the Applied Research Laboratory at The Pennsyl-

vania State University, the pressure directivity was measured and

plotted. The resonance frequencies were also measured when the shell

was submerged in air or water.
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5.2 General Experimental Approach

The resonance frequency measurements were performed for both

14-gauge (actual thickness h = 0.0514 inch) and 8-gauge (actual

thickness h = 0.1069 inch) thick spherical shells. The directivity

pattern measurements were taken on an 8-gauge shell. Each of these

shells is 16 inches in diameter and is constructed of duralumin

material. The spherical shells were fabricated from two hemispherical

shells welded at the equator and the welds ground smooth.

The experimental measurements were carried out in the anechoic

chamber [29] at the Water Tunnel Building and the anechoic water tank

[30] at the Applied Science Building. The anechoic chamber was built

initially in support of this experimental program to investigate the

fluid loading effects on elastic structures. It has internal dimen-

sions of 11 x 12 x 18 feet. The sound absorbing walls are composed

primarily of rock-wool fiberglass insulation, air voids, and wood

frame members. It is considered as a semi-anechoic for frequencies

less than 1 kHz and moderately anechoic for higher frequencies. The

water-filled anechoic tank, which is 12 feet long, 4 feet wide, and

11 feet deep, is lined with Insulkrete wedges. Between 20 and 30 kHz,

the tank is better than 90 percent absorbent. The absorption falls

off rapidly below 20 kHz. The spherical shells were located near the

center of the tank or the chamber. The source and receiver were placed

on a horizontal plane through the center of the shell perpendicular to

the walls of the tank or the chamber.

The resonances of spherical shells were measured by plotting

the frequency response and the modal pattern. A continuous sinusoidal

wave was applied to the shaker to excite the shell in both water and
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air. In the case of the directivity pattern measurement, with the

shell excited by an acoustic spherical source, a pulsed wave was used

in water, while a C.W. source was used in air. The pulsed width was

varied from 0.2 ms to 0.99 ms and the pulse was repeated every 102 ms

to allow for the decay of the pulse in the tank. The total sound

pressure was measured by a hydrophone rotated around the shell with a

speed 0.690 per second. For measurements where both the source and

the field points were located near the surface of the shell, the

repetition rate assures that the receiver will adequately measure the

signal before the arrival of the next pulse. Furthermore, in such a

slow motion, the measured arm does not create any significant flow

noise affecting the measurement of the acoustic pressure.

In the experiments to measure the directivity of the pressure

field in air, the measured data was recorded on film, and was digitized

by use of Vision and the Hybrid Computer at The Pennsylvania State

University. The resulting data were represented in three dimensions

with relief representing amplitude.

5.3 Experimental Equipment

The structures under investigation were two thin elastic

duralumin spherical shells. The radius of both shells was 8 inches,

and these shells have thicknesses of 0.1069 inch and 0.0514 inch,

respectively. The former shell was suspended in water by four 40-lb

fishing strings, 1/64 inch in diameter, attached to the shell by means

of four eye-bolts, 1/8 inch in diameter, screwed to the surface.

Three of them were located at the vertices of a one-inch equilateral

triangle at the pole; the fourth was located at the center of the

., ~.#4H# tAAi
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triangle. All bolts were sealed with Silastic to prevent water from

leaking into the shell and rust. The thinner shell was suspended in

a similar manner, but with one eyebolt screwed on an aluminum adapter

(1/2 inch in diameter, 1/4 inch thick) which was attached to the shell

with epoxy resin. Both of the shells were anodized to prevent

corrosion. The geometrical configuration is shown in Figure 5.1.

The holographic side scanner for recording the nearfield

pressure was composed of a measuring arm, and a turntable as shown in

Figure 5.2. The measuring arm was made of plexiglas because its

characteristic impedance is approximately the same as that of water.

The scanner has a 180-degree scanning range (the old one Lias a 350-

degree scanning angle approximately). The receiver, which is attached

to the measuring arm, could move away from the surface of the shell up

to a distance of 6". The stepping distance of the receiver from the

shell can be varied in steps by the use of a stepping motor. This

flexibility will provide a method for recording the directivity of the

pressure field of the shell at any distance from the surface in a 1800

rotation.

For the measurements of the pressure field in the neighborhood

of a spherical shell insonified by a spherical source in water, the

Atlantic Research LC-32 hydrophone was used as a source (S), while the

LC-10 was used as a receiver (R). These hydrophones are omnidirection-

al both as projector and receiver in the horizontal plane (the plane

perpendicular to the axis of the hydrophone) over the frequency range

used. The source was suspended 8 inches away from an aluminum support

arm, while the receiver attached 6 inches away from the plexiglas

supporting arm pivoted about the surface of the shell (see Figure 5.2).

,,° *i4iA
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When the measurements were carried out in the anechoic chamber, a

one-inch diameter loudspeaker functioned as a source, and the receiver

was the Telectret condenser microphone, Model 5336. It has a dimen-

sion of 0.285" x 0.163". The frequency response is flat up to 16 kHz.

For the measurement of the shell's resonance frequencies, a

1/4-lb. Wilcoxon F5B driver was used to vibrate the shell and the Z12

impedance head was used as a force measuring gauge as well as an

accelerometer to measure the point acceleration of the vibrating shell.

The impedance head was attached to an aluminum adapter (1/2 inch in

diameter, 1/4 inch thick) glued to the surface of the shell. In order

to use the unit in water, a rubber balloon was used to house the

driving unit to prevent wetting. The balloon was glued to the shell

and the air inside the balloon was squeezed out.

5.4 Measurement of the Resonance Frequencies

For the measurement of the resonance frequencies of the two

spherical shells, two precedures were carried out. First, the

measurements of the frequency response of the driving point inertance,

defined as the ratio of the acceleration of the shell's surface to the

applied force at the driving point, will provide the driving point

inertance frequency spectrum. The spectrum's peaks represent the

resonant frequencies of a structure within the frequency range.

Second, the mode shape is measured when the frequency of excitation

is fixed at the frequency corresponding to each peak.

5.4.1 Measurements in Air. In the experiments to measure the

driving point admittance, a sinusoidal wave or a random noise was

applied to the driver to excite the spherical shell. The shell's
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response was received by the attached impedance head and the output

was recorded by a two-channel digital signal processor made by Spectrum

Dynamics [32]. The result was displayed on a cathode ray screen and/or

recorded on an X-Y plotter.

The digital signal processor is a Fast Fourier Transform (FFT)

processor. The use of an FFT technique results in measurement of the

transfer function which is the ratio of the acceleration of the

structural surface to the system forcing function. This transfer

function, the inertance, can be measured to a high degree of accuracy

by means of a processor. The operational setup is shown in Figure 5.3.

To measure the mode shape of the spherical shell, an acceler-

ometer replaces the impedance head, and the voltage was recorded every

50 around the equator of the shell to measure the response. The

measurement sequence was as follows: (1) located the accelerometer at

1800 from the driver, and searching for an excited frequency (resonance

frequency) around a selected peak frequency of the driving point

inertance until a comparable large response was observed on the

oscilloscope; and (2) placing the accelerometer every 50 around the

equator of the shell to measure the response over 1800.

5.4.2 Measurements in Water. To measure the frequency response

of the force excited spherical shell, the experimental setup in air was

used except that the LC-10 hydrophone functioned as a receiver located

at 1800 from the driver instead of the impedance head. In the mode

shape measurements, the procedure was the same as that in air. How-

ever, the receiver, LC-10 hydrophone, was rotated around the shell to

measure the directivity of the pressure field by means of the

-(['w
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holographic scanner. The output of the receiver was recorded on an

X-Y plotter. The receiver was located near the shell's surface.

5.5 Measurement of the Directivity Pattern

In this measurement, the near field of a spherical shell

insonified by anacoustic spherical source was studied. The source

and the receiver were located within one wavelength from the surface

of the shell. The source was fixed at one extreme end of the

scanner (reference zero degree) while the receiver was rotated about

the equator of the shell in the horizontal plane.

5.5.1 Measurement in Water. In the measurement of the

acoustic directivity field of a spherical shell, submerged in water

and excited by a pulsing spherical source, the received signal was

the sum of direct signal and indirect signal (reflected, creeping or

diffracted wave). There was a time delay between the received signal

and the reference signal. Therefore, the output from the receiver

hydrophone was gated to pass the signal that arrived after a time

corresponding to the travel time from the source to the surface and

then to the receiver.

Technically, the pulse width of a signal is greater than 3/f

where f is the source frequency. It means that the lower the

frequency, the greater the pulse width. The pulse width for the

source frequency was varied from 0.2 ms to 0.99 ms to provide a

sufficient number of full cycles impinging on the surface. The pulse

was repeated every 102 ms to insure that all echoes from the tank

boundaries or other surfaces had decayed sufficiently before the

next pulse was generated.

4
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The total pressure field was measured by the rotated LC-1O

hydrophone continuously, while the LC-32 hydrophone, functioning as

a source, was fixed at a reference zero degree. The output from the

hydrophone was filtered, amplified, and gated. The measured signal

was recorded on an X-Y plotter. The block diagram of the experimental

setup is shown in Figure 5.4.

5.5.2 Measurements in Air. In the measurement of the

directivity pattern in air, a different approach was employed instead

of the method mentioned in Section 5.5.1. This technique may be

called the sound field visualization technique. By applying this

technique, the amplitude and the phase of the pressure field can be

recorded on photographic film.

The received signal goes through a monitoring circuit which

converts the acoustical signal into a light signal via a light

emitted diode (LED). The measurement block diagram is shown in

Figure 5.5. The monitoring circuit is a kind of phase circuitry [311.

This circuit provides phase comparison between two signals, the

driving signal and the received acoustic signal. The comparison

between the phase of the driving signal and the phase of the received

signal produces an output pulse of varying width depending on the

phase difference between the two signals. A dc voltage ramp corre-

sponding to the pulse width will turn the LED on for a 0* - 900 phase

shift (high dc ramp voltages) and off for 90* - 1800 phase shift (low

dc ramp voltages).

The amplitude circuitry is a comparator circuit [311 which is

adjusted to turn the LED on or off when the voltage of the received

air 'A'
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signal is greater or less than the set upper or lower level of the

circuit, respectively.

An overall sketch of the experimental setup is shown in

Figure 5.6. The spherical shell, hung in the middle of the anechoic

chamber, was insonified by a one-inch diameter speaker. The micro-

phone, attached at the end of a small plastic stick, scanned around

the surface of the shell on the equatorial plane. The LED was located

right below the measuring boom about 4 inches behind the microphone,

whose brightness was calibrated to correspond to the intensity of the

sound field. This varying light intensity was recorded by means of a

camera set at a long time exposure. The typical measurement time for

one picture was about 2 hours for an 8-inch horizontal scanned dis-

tance at the stepping rate of 1/8 inch/scan. The resulting photo-

graph was then digitized and processed in three dimensions with relief

representing amplitude.

5.6 The Results of the Measurement of Resonance Frequencies

The driving point admittance in air of the thin and thick

shells are shown in Figures 5.7a - 5.8b, respectively. Both shells

exhibit an antiresonance in the low frequency range as was predicted

earlier and shown in Figures 3.5 and 3.6a. In the higher frequency

range, the measured resonances are the peaks of the admittance.

These resonance frequencies were identified by the measurements of

the mode shape and the results are tabulated in Tables 5.1 and 5.2

for the two shells. The difference between the predicted and the

measured resonance frequencies is small for most of the measured mode

orders. The good agreement occurred in spite of the nonuniformity of
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TABLE 5.1

MEASURED (f' ) AND CALCULATED (f ) RESONANCE
n n

FREQUENCIES OF A SPHERICAL SHELL (h = 0.0514")

SUBMERGED IN AIR AND WATER

Air Water

f f ' f f '
n n n n

n (kHz) (kHz) (kHz) (kHz)

2 2.868 2.867 0.732 0.764
3 3.408 3.246 0.927 0.945
4 3.624 3.526 1.065 1.074
5 3.734 3.598 1.177 1.178
6 3.800 3.710 1.276 1.270
7 3.847 3.767 1.365 1.357
8 3.887 3.804 1.448 1.436
9 3.925 3.912 1.567 1.515

10 3.967 3.972 1.605 1.595
11 4.015 4.032 1.682 1.650
12 4.071 4.092 1.761 1.760
13 4.138 4.176 1.844 1.800
14 4.218 4.315 1.931 1.900
15 4.312 4.461 2.024 2.025
16 4.421 4.591 2.124 2.180
17 4.549 4.701 2.234 2.300
18 4.698 4.771 2.354 2.340
19 4.869 4.906 2.486 2.500
20 5.061 5.081 2.630 2.670
21 5.275 5.293 2.788 2.760
22 5.511 5.521 2.958 2.960
23 5.768 5.800 3.143 3.100
24 6.047 6.043 3.341 3.340
25 6.347 6.341 3.554 3.500
26 6.681 6.720 3.782 3.640
27 7.011 7.088 4.025 3.800
28 7.432 7.376 4.283 4.150
29 7.863 7.763 4.558 4.500
30 8.254 8.172 4.848 4.900
31 8.671 8.601 5.154 5.350
32 9.025 9.049 5.475 5.820
33 9.433 9.516 6.160 6.850
34 9.703 10.000 6.160 6.850

7"
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TABLE 5.2

MEASURED (f' )AND CALCULATED (f )RESONANCE

FREQUENCIES OF A SPHERICAL SHELL (h = 0.1069")

SUBMERGED IN AIR AND WATER

Air Water

fn fIn fn n
n (kHz) (kHz) (kHz) (kHz)

2 2.868 2.877 1.002 1.050
3 3.411 3.460 1.270 1.320
4 3.633 3.601 1.459 1.468
5 3.754 3.758 1.612 1.610
6 3.841 3.855 1.746 1.740
7 3.921 3.943 1.874 1.863
8 4.009 4.059 2.001 1.989
9 4.155 4.092 2.133 2.180

10 4.248 4.192 2.277 2.300
11 4.413 4.343 2.437 2.480
12 4.614 4.548 2.618 2.680
13 4.856 4.737 2.823 2.890
14 5.141 5.007 3.056 3.105
15 5.470 5.308 3.317 3.400
16 5.845 5.681 3.610 3.704
17 6.264 6.053 3.936 4.050
18 6.728 6.501 4.294 4.400
19 7.236 6.970 4.685 4.800
20 7.786 7.538 5.110 5.250
21 8.378 8.103 5.567 5.75U
22 9.011 8.722 6.058 6.205
23 9.684 9.422 6.582 6.780
24 10.397 9.900 7.183 7.350
25 11.147 10.692 7.727 7.980
26 11.935 11.412 8.347 8.580
27 9.000 9.220
28 9.684 9.920
29 10.399 10.660
30 11.145 11.400
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the shell's thickness and the existence of the weld between the two

hemispheres making up each spherical shell.

The measured resonance frequencies for submerged shells in

water were obtained from the peaks in the driving point inertance

shown in Figures 5.9 and 5.10 for the thin and thick shells, respec-

tively. The measured resonances, as identified by the measured mode

shape, are tabulated in Tables 5.1 and 5.2, respectively, for thin

and thick shells. The agreement between the measured and predicted

resonances again is very good.

It should be noted that the good agreement between the pre-

dicted and measured resonance frequencies was attained only after a

thorough measurement of the thickness of the shell was made. The

manufacturer has supplied us with nominal thicknesses of 8-gauge and

14-gauge for the two shells. However, it has been found that the

8-gauge and the 14-gauge shells actually have thicknesses of 0.1069

inch and 0.0514 inch, respectively. This drop in thickness of two

gauges has been confirmed by ultrasonic measurement. In this

measurement, a Krautkramer-Branson Ultrasonic Pulse-Echo Thickness

Gauge (Model CL 204) [331 was used, with an accuracy of the thickness

measurement of + 0.01%. The thickness of the shell was obtained by

averaging the measured thickness of 120 points of two orthogonal

circles on the surface. The corrected resonances using the actual

thicknesses are those listed in Tables 5.1 and 5.2. All these data

are shown graphically in Figures 5.11, 5.12, 5.13, and 5.14. The

decrease in the thickness would have a slight change in the resonance

frequencies of shells in air. However, the error is more appreciable

* X
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when one uses a thinner wall thickness for the resonance frequencies

of shells submerged in water.

5.7 Measured Frequency Spectra of the Shell's Response

The measured driving point admittance of the two shells in air

are shown in Figures 5.7 and 5.8 for the thin and thick shells,

respectively. These plots were obtained by use of the best available

digital mass cancellation scheme. These spectra exhibit high Q's at

all the resonances. The mean value of the measured spectra are also

shwon vs. the predicted mean value. The predicted mean value was

found to be higher than the measured value by approximately 3 dB for

both shells. This difference can be attributed to the fact that the

measured mean value of shells with low damping or high Q's can

fluctuate depending on the support condition of the shells, the

dynamic range of the measuring system, and the still inexact mass

cancellation scheme for structures with high Q.

The driving point inertance in water is shown in Figures 5.9

and 5.10 for the thin and the thick shells, respectively. Although

the mass cancellation scheme was not available for these measurements,

the absolute value of the maxima and minima are probably fairly well

approximated, since the Q's of the submerged shell were probably

lower than those in air.

5.8 The Results of the Directivitv Pressure Field Measurement

Figures 5.15, 5.16, 5.17, 5.18, and 5.19 show the directivity (

pressure field of the shell, h = 0.1069", submerged in water. The

pressure fielW was normalized by the corresponding free field at the
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receiver located at thq antipode, denoted as FF(180*) • The source

was located at r = 8.945" measured from the acoustic center of the0

source (LC-32 hydrophone) at the reference zero degree, while the

receiver hydrophone, LC-10, was located at r - 8.567" for the

measurements shown in Figures 5.15 and 5.16. For Figures 5.17

through 5.19, the distances of the source and the receiver were

r = 10.195" and r - 8.63" , respectively. The excited frequencies

were varied from ka = 4.4276 to 30 . The solid line with asterisks

represents the calculated result, and the solid line is the measured

data.

Generally, the discrepancy between the measured and calculated

pressure fields lies within a few dB. The largest discrepancy occurs

at the minima, especially for the near field at the high frequencies

patterns (see Figures 5.17 - 5.19).

For the measurement of the directivity pattern in air, the

sound visualization technique is used. Figure 5.20 represents the

photographic experimental data of sound propagation near the surface

of the spherical shell, h - 0.1069", insonified by a I" diameter

speaker located at a distance 1/4" from the surface. The intensity

of the lighted area of the photograph represents the amplitude of

the sound field for ka - 18 ; scan range, 3/16" to 6". This result

is shown in three dimensions with relief representing amplitude in

Figure 5.21. Figure 5.22 is a three-dimensional theoretical plot of

the predicted directionality field at the same frequency. (

As seen in Figures 5.20 and 5.21, there is a bright spot at

the antipode as expected from the theory (see Figure 5.22). There
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speaker

Figure 5.20 2-D photographic experimental data of sound
field near a shell with thickness h =0.1069"
insonified by a 1" diameter speaker for
ka 18 in air
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speaker

Figure 5.21 3-D measured directivity pattern of
a shell with thickness h =0.1069"
for ka =18 in air
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speaker

Figure 5.22 3-D predicted directivity pattern of a

shell with thickness h =0.1069" for

ka 18 in air
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is a dim zone for angles off the antipode up to about 900. Actually,

it is a weak sound zone (see Figure 5.22) when compared with the

bright spot at the antipode and the zone near the source. The (

voltage level of the comparator circuit has to be adjusted to have

a considerably better dynamic range in the picture when compared with

the predicted pattern. If the level is set too high, the sound

pressure (brightness) in the shadow zone including the antipode

area may not show in the picture. On the contrary, if the level is

too low, there will result a completely bright annular. It should

be recognized that the brightness (the amplitude) is limited by the

degree of sensitivity of the film. If the light intensity of the LED

exceeds the intensity sensitivity of the film, then all intensity

beyond this limitation will have the same intensity. This result

causes a flat response in the zone near the source as shown in

Figure 5.20.

Figures 5.23 and 5.24 show the photographic recording in

two-dimensional cross-section and three-dimensional graphic,

respectively, for the same system with ka = 22 . Figure 5.25

represents the predicted pattern in three-dimensional graphic

display. It is clear that the sound field as shown in Figure 5.22

changes rapidly in the zone near the antipode as predicted. The

bright spot at the antipode is always there because the sound field

is in focus.

Although the sound visualization technique in some ways

cannot be as powerful as the method described in the previous

section in terms of obtaining detailed data, it is an economic and
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speaker

Figure 5.23 2-D measured directivity pattern of a shell with
thickness h-0.1069" for ka=22 in air
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Figure 5.24 3-D measured directivity pattern of a shell
with thickness h =0.1069" for ka =22
in air
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speaker

Figure 5.25 3-D predicted directivity pattern of
a shell with thickness h =0.1069"

for ka =22 in air
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easy way to map the whole sound field of a spherical shell. And one

can visualize the sound field around the shell.

This technique enables the detection of the amplitude and the

phase. Figures 5.26, 5.27, and 5.28 show the phase pattern of the

acoustic near field of the spherical shell, h = 0.1069", insonified

by a 1" diameter speaker located 1/4" from the shell's surface for

frequencies ranging from ka = 6 to 30. The scan range is from 1/8"

to 5". In viewing these annular phase patterns, the black and white

stripes seem to be the creast and trough of a spherical sound wave

travelling out from the source. The black stripes are the result of

a destructive interference between the incident wave and the in-

direct wave (received wave), while the white stripes are due to a

constructive interference. In the shadow zone, the interference is

not as simple as the zone near the source. It has an irregular

interference pattern. The irregular area increases with increasing

frequency. It is evident that the number of black and white stripes

increases and the stripes become narrower as the frequency increases

because the interference areas increase in number.

In the following series of pictures, Figures 5.29 through 5.32,

the interference phase pattern is shown to be influenced by the source

position and its interaction with the shell. Figure 29 shows the

phase pattern in the absence of the shell. The speaker, driven with

ka = 22.494 , is located at a distance 10" from the surface of the

imaginary sphere. The scan range is 0.125" to 8.44". In viewing

this result, the wave form is that of a spherical wave spreading

outward. In the presence of the shell, the uniform wave form has

r-.,--
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speaker

Figure 5.26 Measured phase pattern of a shell with
thickness h = 0.1069" for ka 6
in air
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speaker

Figure 5.27 Measured phase pattern of a shell with
thickness h = 0.1069" for ka 10
in air
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speaker

Figure 5.28 Measured phase pattern,-of a shell with

thickness h 0.1069" for ka =14
in air
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Figue 5.9 Masurd phse atten fo a hellwit

thicnessh 0.069"for a 1

in air
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Figue 5.0 Masurd phse atten fo a hellwit
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Figure 5.31 Measured phase pattern for a shell with

thickness h = 0.1069" for ka = 26

in air
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speaker

Figure 5.32 Measured phase pattern for a shell with
thickness h =0.1069" for ka =30
in air
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been disturbed due to the presence of the reflected and diffracted

waves. In the zone near the source, the distortion of the wave form

is low. As the observer point moves away from the source, distortion

becomes obvious, especially in the area near the surface because the

direct wave no longer reaches there and the diffracted wave dominates

that area (shadow zone). Far away from the source in the shadow zone,

the wave form of the near field becomes distorted because of strong

interference. Figures 5.30, 5.31, and 5.32 show a series of phase

patterns for the speaker located at varied distances ranging from

10" to 5/6" away from the shell excited at ka = 22.494 in air.

The field in the illuminated zone resembles that of a point source

in most of the pictures. However, the field in the shadow zone is

primarily due to the weak diffracted (creeping) waves, so that the

phase of the pressure is practically unchanged.

From the experimental results and analyses in this chapter,

the use of the holographic scanner was shown to give a detailed

directivity measurement as well as a sound visualization recording.

The detailed measurement only provides a single recording, while

the sound visualization technique (SVT) gives a completed image of

the phase interference and the diffracted pressure intensity. Also,

the SVT supplies information about the location and the driving

frequency of the source. The disadvantage of the SVT is that it

cannot provide a sufficient dynamic range for use in theoretical

verification.
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CHAPTER VI

SUM14ARY AND CONCLUSIONS

6.1 Introduction

In this study, the vibrational response of submerged spherical

shells and the radiated acoustic nearfield of these shells was

investigated. An elastic spherical shell was excited to vibration by

either a normal point force or an acoustic point source. The equations

of motion of an elastic shell was derived by Hamilton's principle, with

the excitation force field included in this derivation. The shell's

theory used is that for a thin shell with only extensional and bending

deformations included.

The solution for the vibrational response of a point excited

spherical shell and the resulting acoustic nearfield was predicted by

the summation of modal response. These solutions were verified by

exciting two duralumin spherical shells to vibration in air and in

water and recording the driving point admittance and the resonance

frequencies.

In another part of the investigation, the nearfield of an

elastic spherical shell due to an acoustic point source was predicted

by the wave-harmonic series as well as by the Geometrical Theory of

Diffraction (GTD). The nearfield acoustic perssure was measured in

dir by use of specially constructed apparatus which produced a vi-ual

( representation of the acoustic field. Measurement of the nearfield

in water was also made by use of a specially constructed holographic

scanner. These measurements were used t- verify the predicted

directivity patterns.

I

t



194

6.2 Point Excited Spherical Shells

The vibrational response of point force excited spherical

shells was predicted by use of modal summation. The mode shapes of

vibration and the resonance frequencies of such shells were then

compared to the measured ones. The resonance frequencies in air were

measured for mode numbers up to 34 and found to be within 5% of the

predicted ones. Since the deformation energy influences the resonance

frequencies, this agreement indicates that a deformation theory which

includes extensional and bending deformation is adequate for describing

the shell's dynamic response. Thus, there is no need to further refine

the deformation by including shear deformation and rotatory inertia.

For a point excited shell submerged in water, the resonance

frequencies were computed by use of an iterative technique. The

iteration starts with the known resonance frequencies of the shells

in air. The resonance frequencies of the shells in water are lower

than those in air because of the virtual mass of the water being

displaced must be added to the mass of the shell. The resonance

frequencies and mode shapes of the two shells were measured for mode

numbers up to 34. Again, a good agreement was obtained, indicating

that the model for the acoustic virtual mass of the water was adequate.

The mean value of the driving point admittance spectra of the

vibrating shells in air were also computed exactly by the modal

summation and also by Skudrzyk's Mean Value Theorem and found to agree

very well. However, when these were compared with the measured mean

values, they were found to be 3 dB lower than predicted. This can be

attributed to the increase in the modal density by the extra split

modes occurring in a spherical shell made of two hemispherical shells
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welded at the equator. Such an increase in modal density usually

predicts lower mean values, see Equation (2.58).

6.3 Acoustic Nearfield of a Point-Source Excited Spherical Shell

The acoustic nearfield pressure of a spherical shell excited by

a point source was computed by use of wave harmonics. The acoustic

nearfield includes the direct, the reflected, the diffracted, and most

importantly, the radiated field. The weak diffracted waves are due to

acoustic-borne waves travelling around the sphere. The radiated waves

are due to the vibration of the shell, i.e., the structure-borne waves.

In the illuminated zone of a shell in air, the nearfield looks

like that of rigid spheres, because the direct and reflected waves

dominate the radiated waves. However, in the shadow zone, only

diffracted and radiated waves exist and, hence, the nearfield is

dominated by the radiated waves. These were confirmed when the two

spherical shells were insonified by an acoustic loudspeaker and a

microphone was used to detect the acoustic pressure levels in the

neighborhood of the shells in air. The whole test system was located

inside an anechoic chamber.

In the illuminated and shadow zones of a spherical shell

submerged in water, the radiated waves dominate the other waves.

Thus, the structure-borne waves were found to dominate the diffracted

waves by as much as 80 dB at low frequencies, and 60 dB at the high

frequencies in the shadow zone. The measurements of the nearfield of a

spherical shell submerged in water was made in a large water tank.

The measured directivity patterns agreed well with the predicted ones

up to ka = 30

1l
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The GTD method was used to compute the diffracted waves in the

shadow zone. The spherical surface was given a real or complex

locally reacting impedance. The diffracted rays (creeping waves)

were found to be highly attenuated by the absorption of the surface.

Thus, the GTD predicted levels which are much lower than those

predicted by the exact solution which included radiated waves.

Various surface impedances were used in these calculations, such as

the characteristic impedance of the shell material, plate wave

impedance, etc. The GTD predicted levels for the hardest impedance

(Pc of duralumin) which were 60 dB lower than the exactly computed

ones.

6.4 Conclusions

The study of the nearfield of spherical shells was carried out

to investigate analytically the effect of fluid loading on the

response of the shell and to verify these observations by conducting

controlled tests in air and in water. Conclusions drawn from the

analytical and experimental results include:

a. The vibrational response of the shell in air and

water can be modeled by a thin shell theory that

includes extensional and bending deformation only.

b. The modes of vibration in air and water are identical,

the only difference between them is the resonance

frequencies being lower in water than those in air.

c. If the acoustic loading is heavy, such as water, one

cannot scale the in-air experiments to those in water.

LL* *
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The acoustic nearfield of an elastic structure

resembles that of a rigid body in air. However,

the nearfield pressure of a shell in water is

dominated by the vibrational energy radiating

into the nearfield.

e. The GTD method cannot be used to predict the nearfield

of an elastic structure in water because the impedance

used in the computations must be the exact vibrational

impedance of the shell. Otherwise, any other model

for the impedance of the shell would predict the weak

creeping wave field only.

6.5 Suggested Future Research

There are still more questions that have not been answered in

this study. These pertain to the general applicability of analytic

methods for the prediction of the nearfield of insonified elastic

structures. Specifically, the following areas need further

investigations:

1. The modal response of the shell in the higher frequency

range. Investigate the need for more exact theory of

deformation.

2. The need to use the GTD method for general elastic

structures requires further studies into the possibility

of including structure-borne vibrational waves in theory.

3. The development of new scaling laws by use of special tests

in air, since direct use of scaling from air to water is

not feasible.

". 'r- * ' ' . . .. .
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APPENDIX A

DERIVATION OF THE SHELL'S EQUATIONS

OF MOTION

In order to obtain a spherical shell's equations of motion,

Equations (2.9) and (2.10), the Hamilton's principle as shown in

Equation (2.1) is employed. Let the function

F = T-V+Q + (A.1)

where F = F(u, ue, 6, w, w0,, wee, y) . The integral form of the

Hamilton's equation can be expressed in a differential form as:

3F d 2F + _ F d2 A d , (A.2)

3q d q de2  J dt

where q is a spatial coordinate. Consider a tangential or radial

motion, the coordinate u or w replaces q , then:

3F d 3F d 3F (A.3)
-u - dO i0-u-0  dt 2 F(.

and

3F d 3F d2 ( 3F d aF3wO+ - -- -- =0(A4
Yw wuT e dO2 awo dt 3* (A.4)

ww r 2 w . =w au au
where -e =- 96 Wee = 2 2- w -7 - = ue and , =

Do

In regard to the strain energy density, the total kinetic

( energy, and the potential function as shown in Equations (2.4),

(2.7), and (2.8), respectively,

'I,
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3F
au u

2-hE 22 cot[o - vcotew + ote 3-

(1- v 0 30

[cw2 2ww u2Wot2u + cot e L + vcote -+ vcote -] sinOdO

vcot ae 2 3

(A. 5)

D F zw
u0 u0au a D a V

- 2na2 J 3V sin~dO

0

- 2,Ta 2 ( -Eh L-ae + + Eh 3

2(1 v2) a a 24(1 - v2)
0

[2Ke  2v snd

a a?

then:

F 2.rEh - 2 U - w cote
dO 9u (i - v2 o 2

DO Cote - wcot - u - +R3 + 2

(2 2
+ 3L 0 coto + v Coto a - u + Coto aL-

130 30O 0DO2f~

x sinOdO (A.6)

3F DT 2
2ffp ha u sinOdO-- =  u f tnd

oH 8 o
0

and then:

d (3F) 2 r 2u

dt auJ s 2Trpsha -2 sin~de (A.7)
S0at

• • 0
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Substituting Equations (A.5), (A.6), and (A.7) into Equation (A.3),

one obtains:

(1 + 8) j(v + cot2e)u - cote j e 2] + [cot
2 e+(1+v)+8v]-a

L 2w 3w i -V 2  2o

$cot0- E pa 2  -2  = 0 . (A.8)

Similarly, differentiating the function F with respect to w , one

obtains:

- 2-- J{( -L + ucotO - 2w) (1 + V) sinede

0

- 2la 2  (Pi + Pr) sinOde (A.9)

DF _V

27r [2 D3  2VK 3K,
2a 4 2 Eh + O2K I sinOdO0 24(l - 2) awe- ]

then:
2 h3  r K 3Kd F TaEh 2J I2K N+ 2VK cos8

dO 3w0  12(l - v') w0  e awe1

0

+ d [2K !5 2vK !!w jsinO dO

To .1*
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2iTEhS fr Ivte 2w +ct2o v) 2Lw

2~~ (co + - o~
+1v2  (co 6 0 -30- -(ctOs

0A10

-7~i ( oTr + 20) + Vcote u+aw snd
v 2 0 2 330

(cot ; 26rh Trv 3U 4cw ; a)2

--'- (2+ (2 + s) In+ 2v

aF a 3 2

2ir ~ ~ ~ -. +t (2 + vcotO u~~sn
(- vc) -- + e23 3  2

then,

d 2 (3s2th83w

32
d Dct Fr 2 w 2+vct

w) (3.hZ + 2 sU i VOtd } iOd (A.12)

andt

0
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Substituting Equations (A.9), (A.10), (A.11), and (A.12) into

Equation (A.4), one obtains:

a2 + 2acotO - (( + v)(1 + ) + acot 0] -u

" [$cot 30 + 30cot6 (1 + )(1 + V)cot~lu

af 3 w 2 a
"a + 2cote - -(1 + v + cot~e 0)-

" (2cote + -otv3ot0) -c } + 2(1 + V)w

+1 -v pa 2 aw + -v a2(p+ 0 A.3
E 2 Eh a ip p

where a (h/a) 2/12

(L
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APPENDIX B

DERIVATION OF THE DIFFRACTION FACTOR

The derivation of the term Sh( 2) (ka) / [h1) (ka)]
S s S=S

n n
and the boundary condition of an impedance shell is outlined in this

appendix.

The boundary condition of the spherical shell is presented in

Equation (4.9) as:

h (I ) (ka)
s n iz (B.1)

h (I )'(ka) a
s

n

By making use of the properties:

(1) (1)

hn = 2x n+1/2

and

h (x) 2 n/ (x)

n 2x' -- ,(1),
/' H Wnl2 x x >> 1 (B.2)

Equation (B.) can be expressed in terms of the cylindrical Hankel

i function as:

H (1) (ka)
5
n= iz (B.3)

H( 1) (ka) a
sn
n

where sn = p n - 1/2 . Furthermore, the cylindrical Hankel function

can be presented in terms of the Airy function [24, 25, 28] as x ' n

for large x:

;,W .--7

.Q*
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Hn (x) , e- X 2) A(qn)

where A(q n) is the Airy function,
n3

A(q) fcos(t3 qt)dt (B.5)
0

and
6)1/ -iff/3

q ()/3 e (n - x) (B.6)

For the poles of the Hankel function in Equation (B.3):

s = ka + qn 1/3 e iT'/ (B.7)

The derivative of the Hankel function with respect to the argument is

obtained by taking a differentiation of H (1)(x) in Equation (B.4):n

bx) 2 (6.1/3 -iir/3 1
-W (, ) e [A' (q)q' - T A(q)n Tx

and
I, % -iw/3 (6)1/3 [ 1 13 x ( )

-i /3.6)

For large x ,and n ' x

H(1),(x 2(6)2/3 -2/A
H ( ) 23e -27/3A(q) (B.8)
n T

Substituting Equations (B.5) and (B.8) into Equation (B.3), one

obtains the boundary condition in the form of the Airy function:

A'(q) 15r/6 ()I1/3 Z-1

A(q) - e a (.9)

For large x ,s '- 0 n where J = s + 1/2 , and by using the
nt n n n

relationship in Equation (B.2), one can reduce

I* :
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Ph(2) W (2) (x)
xn Vn, (B. 10)

nn s=S - P =.1 *n

where £Qh (x) = h (x) - iZa h' (x) Taking a differentiation of
s s a
n n n

Equations (B.4) and (B.8) with respect to the order of n , one has:

-
( 1 ) ( x ) " 2 -i2lr/3 6 2/3

n n x -e A'(q) (B.ll)

and

H (1 x) 2 (6) A"(q)n n 1

Sq A(q) (B.12)7rx

where A"(q) - q/3A(q) . Using the relationship in Equations (B.4),

(B.8), (B.l), (B.12), and

H(I) W H (2), (x) - H( )1' (x) (2) (x) - 4Hs s s Hs i~rka

n n n n

Equation (B.10) can, therefore, be reduced in terms of the Airy

functions:

U2 ( 2 ) (ka)
Sn rre 5Tr/6 ( f{1/3 A'(q 2 + !- (q

) -kH (l)(ka)J 6 n 3 A

Cn (B.13)

. - -
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